993 resultados para Thin-wall


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ferroelectric c-oriented Bi2VO5.5 (BVO) thin films (thickness approximate to 300 nm) were fabricated by pulsed laser deposition on corning glass substrates. Nonlinear refractive index (n(2)) and two photon absorption coefficient (beta) were measured by Z-scan technique at 532 nm wavelength delivering pulses with 10 ns duration. Relatively large values of n(2) = 2.05 +/- 0.2 x 10(-10) cm(2)/W and beta = 9.36 +/- 0.3 cm/MW were obtained for BVO thin films. Origin of the large optical nonlinearities in BVO thin films was discussed based on bond-orbital theory of transition metal oxides. (c) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on the novel flow sensing application of piezoelectric ZnO thin film deposited on Phynox alloy sensing element. Characterization of piezoelectric ZnO films deposited on Phynox (Elgiloy) substrate at different RF powers is discussed. ZnO films deposited at RF power of 100W were found to have fine c-axis orientation, possesses excellent surface morphology with lower rms surface roughness of 1.87 nm and maximum d(31) coefficient value 4.7 pm V-1. The thin cantilever strip of Phynox alloy with ZnO film as a sensing layer for flow sensing has been tested for flow rates ranging from 2 to 18 L min(-1). A detailed theoretical analysis of the experimental set-up showing the relationship between output voltage and force at a particular flow rate has been discussed. The sensitivity of now sensing element is similar to 18 mV/(L min(-1)) and typical response time is of the order of 20 m s. The sensing element is calibrated using in-house developed testing set-up. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Titanium dioxide (TiO2) thin films were deposited on fused quartz substrates by electron beam evaporation method at room temperature. The films were annealed at different temperatures in ambient air. The surface morphology/roughness at different annealing temperatures were analyzed by atomic force microscopy (AFM). The crystallinity of the film has improved with the increase of annealing temperature. The effect of annealing temperature on optical, photoluminescence and Raman spectra of TiO2 films were investigated. The refractive index of TiO2 films were studied by envelope method and reflectance spectra and it is observed that the refractive index of the films was high. The photoluminescence intensity corresponding to green emission was enhanced with increase of annealing temperature. The peaks in Raman spectra depicts that the TiO2 film is of anatase phase after annealing at 300 degrees C and higher. The films show high refractive index, good optical quality and photoluminescence characteristics suggest that possible usage in opto-electronic and optical coating applications. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of Bi layer (thickness similar to 7 nm) on As2S3 film was extensively studied for different optical applications in which Bi (top layer) as active and diffusing layer and As2S3 as barrier (matrix) layer. Bilayer thin films of Bi/As2S3 were prepared from Bi and As2S3 by thermal evaporation technique under high vacuum. The decrease of optical band gap with the addition of Bi to As2S3 has been explained on the basis of density of states and the increase in disorder in the system. It was found that the efficient changes of optical parameters (transmission, optical band gap, refraction) could be realized due to the photo induced diffusion activated by the focused 532 nm laser irradiation and formation of different bonds. The diffusion of Bi into As2S3 matrix increases the optical band gap producing photo bleaching effect. The changes were characterised by different experimental techniques. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CdTe thin films of 500 thickness prepared by thermal evaporation technique were analyzed for leakage current and conduction mechanisms. Metal-insulator-metal (MIM) capacitors were fabricated using these films as a dielectric. These films have many possible applications, such as passivation for infrared diodes that operate at low temperatures (80 K). Direct-current (DC) current-voltage (I-V) and capacitance-voltage (C-V) measurements were performed on these films. Furthermore, the films were subjected to thermal cycling from 300 K to 80 K and back to 300 K. Typical minimum leakage currents near zero bias at room temperature varied between 0.9 nA and 0.1 mu A, while low-temperature leakage currents were in the range of 9.5 pA to 0.5 nA, corresponding to resistivity values on the order of 10(8) a''broken vertical bar-cm and 10(10) a''broken vertical bar-cm, respectively. Well-known conduction mechanisms from the literature were utilized for fitting of measured I-V data. Our analysis indicates that the conduction mechanism in general is Ohmic for low fields < 5 x 10(4) V cm(-1), while the conduction mechanism for fields > 6 x 10(4) V cm(-1) is modified Poole-Frenkel (MPF) and Fowler-Nordheim (FN) tunneling at room temperature. At 80 K, Schottky-type conduction dominates. A significant observation is that the film did not show any appreciable degradation in leakage current characteristics due to the thermal cycling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Further miniaturization of magnetic and electronic devices demands thin films of advanced nanomaterials with unique properties. Spinel ferrites have been studied extensively owing to their interesting magnetic and electrical properties coupled with stability against oxidation. Being an important ferrospinel, zinc ferrite has wide applications in the biological (MRI) and electronics (RF-CMOS) arenas. The performance of an oxide like ZnFe2O4 depends on stoichiometry (defect structure), and technological applications require thin films of high density, low porosity and controlled microstructure, which depend on the preparation process. While there are many methods for the synthesis of polycrystalline ZnFe2O4 powder, few methods exist for the deposition of its thin films, where prolonged processing at elevated temperature is not required. We report a novel, microwave-assisted, low temperature (<100°C) deposition process that is conducted in the liquid medium, developed for obtaining high quality, polycrystalline ZnFe2O4 thin films on technologically important substrates like Si(100). An environment-friendly solvent (ethanol) and non-hazardous oxide precursors (β-diketonates of Zn and Fe in 1:2 molar ratio), forming a solution together, is subjected to irradiation in a domestic microwave oven (2.45 GHz) for a few minutes, leading to reactions which result in the deposition of ZnFe2O4 films on Si (100) substrates suspended in the solution. Selected surfactants added to the reactant solution in optimum concentration can be used to control film microstructure. The nominal temperature of the irradiated solution, i.e., film deposition temperature, seldom exceeds 100°C, thus sharply lowering the thermal budget. Surface roughness and uniformity of large area depositions (50x50 mm2) are controlled by tweaking the concentration of the mother solution. Thickness of the films thus grown on Si (100) within 5 min of microwave irradiation can be as high as several microns. The present process, not requiring a vacuum system, carries a very low thermal budget and, together with a proper choice of solvents, is compatible with CMOS integration. This novel solution-based process for depositing highly resistive, adherent, smooth ferrimagnetic films on Si (100) is promising to RF engineers for the fabrication of passive circuit components. It is readily extended to a wide variety of functional oxide films.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An E-plane rectangular folded-waveguide slow-wave structure with metal grating on the broad wall of the waveguide along the direction of the electric field has been proposed and analyzed for the dispersion and interaction impedance characteristics through three dimensional electromagnetic modeling in CST Studio. The effects of the presence of grating on the bandwidth and interaction impedance are demonstrated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The impact of chemical treatment on the surface morphology and other physical properties of tin monosulphide (SnS) thin films have been investigated. The SnS films treated with selected organic solvents exhibited strong improvement in their crystalline-quality and considerable decrease in electrical resistivity. Particularly, the films treated with chloroform showed very low electrical resistivity of similar to 5 Omega cm and a low optical band gap of 1.81 eV as compared to untreated and treated SnS films with other chemicals. From these studies we realized that the chemical treatment of SnS films has strong impact on their surface morphology and also on other physical properties. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

TiO2 and Al2O3 are commonly used materials in optical thin films in the visible and near‐infrared wavelength region due to their high transparency and good stability. In this work, TiO2 and Al2O3 single, and nano composite thin films with different compositions were deposited on glass and silicon substrates at room temperature using a sol‐gel spin coater. The optical properties like reflectance, transmittance and refractive index have been studied using Spectrophotometer, and structural properties using X‐Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrical switching studies on amorphous Ge17Te83−xSnx thin films (1 ≤ x ≤ 4) has been done to find their suitability for Phase Change Memory application; Bulk ingots in glassy form are prepared using conventional melt quenching technique and the thin films are coated using flash evaporation technique. Samples are found to exhibit memory type of electrical switching behavior. The switching voltages of Ge17Te83−xSnx thin films have been found to decrease with increase in Sn concentration. The comparatively lower switching voltages of Ge17Te83−xSnx samples, make them suitable candidates for phase change memory applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work presents micro-actuation of atomic force microscopy (AFM) cantilevers using piezoelectric Zinc Oxide (ZnO) thin film. In tapping mode AFM, the cantilever is driven near its resonant frequency by an external oscillator such as piezotube or stack of piezoelectric material. Use of integrated piezoelectric thin film for AFM cantilever eliminates the problems like inaccurate tuning and unwanted vibration modes. In this work, silicon AFM cantilevers were sputter deposited with ZnO piezoelectric film along with top and bottom metallic electrodes. The self-excitation of the ZnO coated AFM cantilever was studied using Laser Doppler Vibrometer (LDV). At its resonant frequency (227.11 kHz), the cantilever displacement varies linearly with applied excitation voltage. We observed an increase in the actuation response (131nm/V) due to improved quality of ZnO films deposited at 200 degrees C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we report on the application aspect of piezoelectric ZnO thin film deposited on flexible phynox alloy substrate. Highly crystalline piezoelectric ZnO thin films were deposited by RF reactive magnetron sputtering and were characterized by XRD, SEM, AFM analysis. Also, the effective d(33) coefficient value measurement was performed. The actuator element is a circular diaphragm of phynox alloy on to which piezoelectric ZnO thin film was deposited. ZnO film deposited actuator element was firmly fixed inside a suitable concave perspex mounting designed specifically for micro actuation purpose. The actuator element was excited at different frequencies for the supply voltages of 2V, 5V and 8V. Maximum deflection of the ZnO film deposited diaphragm was measured to be 1.25 mu m at 100 Hz for the supply voltage of 8V. The developed micro actuator has the potential to be used as a micro pump for pumping nano liters to micro liters of fluids per minute for numerous biomedical and aerospace applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Some low-surface-brightness galaxies are known to have extremely thin stellar discs with the vertical-to-planar axes ratio 0.1 or less, often referred to as superthin galaxies. Although their existence is now known for over three decades, the physical origin of the superthin discs is still not understood. We model the vertical thickness of the stellar disc using our model of a two-component (gravitationally coupled stars and gas) disc embedded in a dark matter halo, for a bulgeless, superthin galaxy UGC 7321 which has a dense, compact halo, and is compare with a typical dwarf irregular galaxy Holmberg II which has a low-density, non-compact halo. We show that while the presence of gas does constrain the stellar disc thickness and hence its axial ratio, it is the compact dark matter halo which plays the decisive role in determining the mean distribution of stars in the vertical direction in low-luminosity bulgeless galaxies like UGC 7321, and causes the stellar disc to be superthin. Thus, the compactness of the dark matter halo significantly affects the disc structure and this could be important for the early evolution of galaxies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report, strong ultraviolet (UV) emission from ZnO nanoparticle thin film obtained by a green synthesis, where the film is formed by the microwave irradiation of the alcohol solution of the precursor. The deposition is carried out in non-aqueous medium without the use of any surfactant, and the film formation is quick (5 min). The film is uniform comprising of mono-disperse nanoparticles having a narrow size distribution (15-22 nm), and that cover over an entire area (625 mm(2)) of the substrate. The growth rate is comparatively high (30-70 nm/min). It is possible to tune the morphology of the films and the UV emission by varying the process parameters. The growth mechanism is discussed precisely and schematic of the growth process is provided.