996 resultados para Thin foils
Resumo:
This paper reports on the synthesis of zinc oxide (ZnO) nanostructures and examines the performance of nanocomposite thin-film transistors (TFTs) fabricated using ZnO dispersed in both n- and p-type polymer host matrices. The ZnO nanostructures considered here comprise nanowires and tetrapods and were synthesized using vapor phase deposition techniques involving the carbothermal reduction of solid-phase zinc-containing compounds. Measurement results of nanocomposite TFTs based on dispersion of ZnO nanorods in an n-type organic semiconductor ([6, 6]-phenyl-C61-butyric acid methyl ester) show electron field-effect mobilities in the range 0.3-0.6 cm2V-1 s-1. representing an approximate enhancement by as much as a factor of 40 from the pristine state. The on/off current ratio of the nanocomposite TFTs approach 106 at saturation with off-currents on the order of 10 pA. The results presented here, although preliminary, show a highly promising enhancement for realization of high-performance solution-processable n-type organic TFTs. © 2008 IEEE.
Resumo:
Plastic electronics is a rapidly expanding topic, much of which has been focused on organic semiconductors. However, it is also of interest to find viable ways to integrate nanomaterials, such as silicon nanowires (SiNWs) and carbon nanotubes (CNTs), into this technology. Here, we present methods of fabrication of composite devices incorporating such nanostructured materials into an organic matrix. We investigate the formation of polymer/CNT composites, for which we use the semiconducting polymer poly(3,3‴-dialkyl-quaterthiophene) (PQT). We also report a method of fabricating polymer/SiNW TFTs, whereby sparse arrays of parallel oriented SiNWs are initially prepared on silicon dioxide substrates from forests of as-grown gold-catalysed SiNWs. Subsequent ink-jet printing of PQT on these arrays produces a polymer/SiNW composite film. We also present the electrical characterization of all composite devices. © 2007 Elsevier B.V. All rights reserved.
Resumo:
This paper describes coupled-effect simulations of smart micro gas-sensors based on standard BiCMOS technology. The smart sensor features very low power consumption, high sensitivity and potential low fabrication cost achieved through full CMOS integration. For the first time the micro heaters are made of active CMOS elements (i.e. MOSFET transistors) and embedded in a thin SOI membrane consisting of Si and SiO2 thin layers. Micro gas-sensors such as chemoresistive, microcalorimeteric and Pd/polymer gate FET sensors can be made using this technology. Full numerical analyses including 3D electro-thermo-mechanical simulations, in particular stress and deflection studies on the SOI membranes are presented. The transducer circuit design and the post-CMOS fabrication process, which includes single sided back-etching, are also reported.
Assessment of Microscale Test Methods of Peeling and Splitting along Surface of Thin-Film/Substrates
Resumo:
Peel test methods are assessed through being applied to a peeling analysis of the ductile film/ceramic substrate system. Through computing the fracture work of the system using the either beam bend model (BB model) or the general plane analysis model (GPA model), surprisingly, a big difference between both model results is found. Although the BB model can capture the plastic dissipation phenomenon for the ductile film case as the GPA model can, it is much sensitive to the choice of the peeling criterion parameters, and it overestimates the plastic bending effect unable to capture crack tip constraint plasticity. In view of the difficulty of measuring interfacial toughness using peel test method when film is the ductile material, a new test method, split test, is recommended and analyzed using the GPA model. The prediction is applied to a wedge-loaded experiment for Al-alloy double-cantilever beam in literature.
Resumo:
Focused laser micromachining in an optical microscope system is used to prototype packages for optoelectronic devices and to investigate new materials with potential applications in packaging. Micromachined thin films are proposed as mechanical components to locate fibres and other optical and electrical components on opto-assemblies. This paper reports prototype structures which are micromachined in silicon carbide to produce beams 5 μm thick by (i) laser cutting a track in a SiC coated Si wafer, (ii) undercutting by anisotropic silicon etching using KOH in water, and (iii) trimming if necessary with the laser system. This approach has the advantage of fast turn around and proof of concept. Mechanical test data are obtained from the prototype SiC beam package structures by testing with a stylus profilometer. The Youngs modulus obtained for chemical vapour deposited silicon carbide is 360 +/- 50 GPa indicating that it is a promising material for packaging applications.
Resumo:
A cross-sectional transmission electron microscope study of the low density layers at the surface and at the substrate-film interface of tetrahedral amorphous carbon (ta-C) films grown on (001) silicon substrates is presented. Spatially resolved electron energy loss spectroscopy is used to determine the bonding and composition of a tetrahedral amorphous carbon film with nanometre spatial resolution. For a ta-C film grown with a substrate bias of -300 V, an interfacial region approximately 5 nm wide is present in which the carbon is sp2 bonded and is mixed with silicon and oxygen from the substrate. An sp2 bonded layer observed at the surface of the film is 1.3 ± 0.3 nm thick and contains no detectable impurities. It is argued that the sp2 bonded surface layer is intrinsic to the growth process, but that the sp2 bonding in the interfacial layer at the substrate may be related to the presence of oxygen from the substrate.
Resumo:
An attempt has been made to prepare a YBa2Cu3O 7-δ (YBCO) thin film doped with ferromagnetic CoFe 2O4. Transmission electron microscopy of the resultant samples shows, however, that Y(Fe, Co)O3 forms as a nanoparticulate dispersion throughout the film in preference to CoFe2O4, leaving the YBCO yttrium deficient. As a consequence, the superconducting properties of the sample are poor, with a self-field critical current density of just 0.25 MA cm-2. Magnetic measurements indicate however that the Y(Fe, Co)O3 content, together with any other residual phases, is also ferromagnetic, and some interesting features are present in the in-field critical current behaviour, including a reduced dependence on applied field and a strong c-axis peak in the angular dependence. The work points the way towards future attempts utilising YFeO3 as an effective ferromagnetic pinning additive for YBCO. © 2009 Elsevier B.V. All rights reserved.
Resumo:
This work describes the deposition and characterisation of semi-insulating oxygen-doped silicon films for the development of high voltage polycrystalline silicon (poly-Si) circuitry on glass. The performance of a novel poly-Si High Voltage Thin Film Transistor (HVTFT) structure, incorporating a layer of semi-insulating material, has been investigated using a two dimensional device simulator. The semi-insulating layer increases the operating voltage of the HVTFT structure by linearising the potential distribution in the device offset region. A glass compatible semi-insulating layer, suitable for HVTFT applications, has been deposited by the Plasma Enhanced Chemical Vapour Deposition (PECVD) technique from silane (SiH4), nitrous oxide (N2O) and helium (He) gas mixtures. The as-deposited films are furnace annealed at 600°C which is the maximum process temperature. By varying the N2O/SiH4 ratio the conductivity of the annealed films can be accurately controlled up to a maximum of around 10-7 Ω-1cm-1. Helium dilution of the reactant gases improves both film uniformity and reproducibility. Raman analysis shows the as-deposited and annealed films to be completely amorphous. A model for the microstructure of these Semi-Insulating Amorphous Oxygen-Doped Silicon (SIAOS) films is proposed to explain the observed physical and electrical properties.
Resumo:
Carbon thin films are very important as protective coatings for a wide range of applications such as magnetic storage devices. The key parameter of interest is the sp3 fraction, since it controls the mechanical properties of the film. Visible Raman spectroscopy is a very popular technique to determine the carbon bonding. However, the visible Raman spectra mainly depend on the configuration and clustering of the sp2 sites. This can result in the Raman spectra of different samples looking similar albeit having a different structure. Thus, visible Raman alone cannot be used to derive the sp3 content. Here we monitor the carbon bonding by using a combined study of Raman spectra taken at two wavelengths (514 and 244 nm). We show how the G peak dispersion is a very useful parameter to investigate the carbon samples and we endorse it as a production-line characterisation tool. The dispersion is proportional to the degree of disorder, thus making it possible to distinguish between graphitic and diamond-like carbon. © 2003 Elsevier B.V. All rights reserved.
Resumo:
Thickness of the near-interface regions (NIR) and central bulk ohmic resistivity in lead lanthanum zirconate titanate ferroelectric thin films were investigated. A method to separate the low-resistive near-interface regions (NIRs) from the high-resistive central bulk region (CBR) in ferroelectric thin films was presented. Results showed that the thickness of the NIRs depended on the electrode materials in use and the CBR resistivity depended on the impurity doping levels.
Resumo:
A multiscale technique that combines an atomistic description of the interfacial (near) region with a coarse-grained (continuum) description of the far regions of the solid substrates is proposed. The new hybrid technique, which represents an advance over a previously proposed dynamically-constrained hybrid atomistic-coarse-grained treatment (Wu et al.J. Chem. Phys., 120, 6744, 2004), is applied to a two-dimensional model tribological system comprising planar substrates sandwiching a monolayer film. Shear–stress profiles (shear stress versus strain) computed by the new hybrid technique are in excellent agreement with “exact” profiles (i.e. those computed treating the whole system at the atomic scale).
Resumo:
Enhanced piezoresponse force microscopy was used to study flux closure vortexlike structures of 90° ferroelastic domains at the nanoscale in thin ferroelectric lead zirconium titanate (PZT) films. Using an external electric field, a vortexlike structure was induced far away from a grain boundary, indicating that physical edges are not necessary for nucleation contrary to previous suggestions. We demonstrate two different configurations of vortexlike structures, one of which has not been observed before. The stability of these structures is found to be size dependent, supporting previous predictions. © 2010 The American Physical Society.
Resumo:
We report here the patterning of primary rat neurons and astrocytes from the postnatal hippocampus on ultra-thin parylene-C deposited on a silicon dioxide substrate, following observations of neuronal, astrocytic and nuclear coverage on strips of different lengths, widths and thicknesses. Neuronal and glial growth was characterized 'on', 'adjacent to' and 'away from' the parylene strips. In addition, the article reports how the same material combination can be used to isolate single cells along thin tracks of parylene-C. This is demonstrated with a series of high magnification images of the experimental observations for varying parylene strip widths and thicknesses. Thus, the findings demonstrate the possibility to culture cells on ultra-thin layers of parylene-C and localize single cells on thin strips. Such work is of interest and significance to the Neuroengineering and Multi-Electrode Array (MEA) communities, as it provides an alternative insulating material in the fabrication of embedded micro-electrodes, which can be used to facilitate single cell stimulation and recording in capacitive coupling mode. © 2010 Elsevier Ltd.