870 resultados para Th pathways
Resumo:
To assess the role of brain antioxidant capacity in the pathogenesis of neonatal hypoxic-ischemic brain injury, we measured the activity of glutathione peroxidase (GPX) in both human-superoxide dismutase-1 (hSOD1) and human-GPX1 overexpressing transgenic (Tg) mice after neonatal hypoxia-ischemia (HI). We have previously shown that mice that overexpress the hSOD1 gene are more injured than their wild-type (WT) littermates after HI, and that H(2)O(2) accumulates in HI hSOD1-Tg hippocampus. We hypothesized that lower GPX activity is responsible for the accumulation of H(2)O(2). Therefore, increasing the activity of this enzyme through gene manipulation should be protective. We show that brains of hGPX1-Tg mice, in contrast to those of hSOD-Tg, have less injury after HI than WT littermates: hGPX1-Tg, median injury score = 8 (range, 0-24) versus WT, median injury score = 17 (range, 2-24), p < 0.01. GPX activity in hSOD1-Tg mice, 2 h and 24 h after HI, showed a delayed and bilateral decline in the cortex 24 h after HI (36.0 +/- 1.2 U/mg in naive hSOD1-Tg versus 29.1 +/- 1.7 U/mg in HI cortex and 29.2 +/- 2.0 for hypoxic cortex, p < 0.006). On the other hand, GPX activity in hGPX1-Tg after HI showed a significant increase by 24 h in the cortex ipsilateral to the injury (48.5 +/- 5.2 U/mg, compared with 37.2 +/- 1.5 U/mg in naive hGPX1-Tg cortex, p < 0.008). These findings support the hypothesis that the immature brain has limited GPX activity and is more susceptible to oxidative damage and may explain the paradoxical effect seen in ischemic neonatal brain when SOD1 is overexpressed.
Resumo:
The activation of NO/cGMP pathways can induce pro-apoptotic pathways in cardiomyocytes although only a small number of cardiomyocytes fulfill the criteria of apoptosis. The same pathways reduce the contractile performance of cardiomyocytes. In the present study, we tested the hypothesis that exposure of cells to NO/cGMP for 24 h decrease their contractile performance due to an activation of pro-apoptotic pathways. Experiments were performed on freshly isolated and cultured adult ventricular rat cardiomyocytes. Cells were incubated with 8-bromo-cyclo-GMP (100 nmol/L-1 micromol/L), the NO donor SNAP (1 nmol/L-100 micromol/L), or the guanylyl cyclase activator YC-1 (3 micromol/L). Cell shortening, contraction and relaxation velocities, and diastolic cell lengths were determined at beating frequencies of 0.5, 1, and 2 Hz 24 h later. The activation of pro-apoptotic pathways was determined by staining of cardiomyocytes with an antibody directed against active caspase-3 and quantification of the number of apoptotic cells (annexin staining). Caspase-3 activation and an increase in the number of apoptotic cells was observed, but only at the highest concentrations tested (8-bromo-cyclo-GMP: 1-10 mmol/L; SNAP: 1-100 micromol/L). At these concentrations, none of the drugs decreased the mean cell shortening of cardiomyocytes. However, at concentrations lower than those required for induction of apoptotic cell death, the diastolic cell lengths and sarcomere lengths increased but cell shortening decreased. In conclusion, low concentrations of either NO or cGMP cause a desensitization of myofibrils, as indicated by elongated cell shapes, increased sarcomere lengths and reduced load-free cell shortening. High concentrations of NO/cGMP induce caspase-3 activation and increase the number of cells fulfilling the criteria of apoptotic cell death but did not impair cell function. Therefore, induction of apoptotic cell death per se seems not to contribute to the loss of contractile efficiency on the cellular level.
Resumo:
In the immature brain hydrogen peroxide accumulates after excitotoxic hypoxia-ischemia and is neurotoxic. Immature hippocampal neurons were exposed to N-methyl-D-aspartate (NMDA), a glutamate agonist, and hydrogen peroxide (H(2)O(2)) and the effects of free radical scavenging and transition metal chelation on neurotoxicity were studied. alpha-Phenyl-N-tert.-butylnitrone (PBN), a known superoxide scavenger, attenuated both H(2)O(2) and NMDA mediated toxicity. Treatment with desferrioxamine (DFX), an iron chelator, at the time of exposure to H(2)O(2) was ineffective, but pretreatment was protective. DFX also protected against NMDA toxicity. TPEN, a metal chelator with higher affinities for a broad spectrum of transition metal ions, also protected against H(2)O(2) toxicity but was ineffective against NMDA induced toxicity. These data suggest that during exposure to free radical and glutamate agonists, the presence of iron and other free metal ions contribute to neuronal cell death. In the immature nervous system this neuronal injury can be attenuated by free radical scavengers and metal chelators.
Resumo:
With nuclear factor-kappaB (NF-kappaB) and p53 functions generally having disparate outcomes for cell survival and cell division, understanding how these pathways are coordinated following a common activation signal such as DNA damage has important implications for cancer therapy. Conflicting reports concerning NF-kappaB and p53 interplay in different cell line models prompted a reexamination of this issue using mouse primary thymocytes and embryonic fibroblasts, plus fibroblasts transformed by E1A12S. Here, we report that following the treatment of these cells with a range of stress stimuli, p53 and NF-kappaB were found to regulate cell cycling and survival independently.
Resumo:
The translocation of secretory and membrane proteins across the endoplasmic reticulum (ER) membrane is mediated by co-translational (via the signal recognition particle (SRP)) and post-translational mechanisms. In this study, we investigated the relative contributions of these two pathways in trypanosomes. A homologue of SEC71, which functions in the post-translocation chaperone pathway in yeast, was identified and silenced by RNA interference. This factor is essential for parasite viability. In SEC71-silenced cells, signal peptide (SP)-containing proteins traversed the ER, but several were mislocalized, whereas polytopic membrane protein biogenesis was unaffected. Surprisingly trypanosomes can interchangeably utilize two of the pathways to translocate SP-containing proteins except for glycosylphosphatidylinositol-anchored proteins, whose level was reduced in SEC71-silenced cells but not in cells depleted for SRP68, an SRP-binding protein. Entry of SP-containing proteins to the ER was significantly blocked only in cells co-silenced for the two translocation pathways (SEC71 and SRP68). SEC63, a factor essential for both translocation pathways in yeast, was identified and silenced by RNA interference. SEC63 silencing affected entry to the ER of both SP-containing proteins and polytopic membrane proteins, suggesting that, as in yeast, this factor is essential for both translocation pathways in vivo. This study suggests that, unlike bacteria or other eukaryotes, trypanosomes are generally promiscuous in their choice of mechanism for translocating SP-containing proteins to the ER, although the SRP-independent pathway is favored for glycosylphosphatidylinositol-anchored proteins, which are the most abundant surface proteins in these parasites.
Resumo:
The developmental processes and functions of an organism are controlled by the genes and the proteins that are derived from these genes. The identification of key genes and the reconstruction of gene networks can provide a model to help us understand the regulatory mechanisms for the initiation and progression of biological processes or functional abnormalities (e.g. diseases) in living organisms. In this dissertation, I have developed statistical methods to identify the genes and transcription factors (TFs) involved in biological processes, constructed their regulatory networks, and also evaluated some existing association methods to find robust methods for coexpression analyses. Two kinds of data sets were used for this work: genotype data and gene expression microarray data. On the basis of these data sets, this dissertation has two major parts, together forming six chapters. The first part deals with developing association methods for rare variants using genotype data (chapter 4 and 5). The second part deals with developing and/or evaluating statistical methods to identify genes and TFs involved in biological processes, and construction of their regulatory networks using gene expression data (chapter 2, 3, and 6). For the first part, I have developed two methods to find the groupwise association of rare variants with given diseases or traits. The first method is based on kernel machine learning and can be applied to both quantitative as well as qualitative traits. Simulation results showed that the proposed method has improved power over the existing weighted sum method (WS) in most settings. The second method uses multiple phenotypes to select a few top significant genes. It then finds the association of each gene with each phenotype while controlling the population stratification by adjusting the data for ancestry using principal components. This method was applied to GAW 17 data and was able to find several disease risk genes. For the second part, I have worked on three problems. First problem involved evaluation of eight gene association methods. A very comprehensive comparison of these methods with further analysis clearly demonstrates the distinct and common performance of these eight gene association methods. For the second problem, an algorithm named the bottom-up graphical Gaussian model was developed to identify the TFs that regulate pathway genes and reconstruct their hierarchical regulatory networks. This algorithm has produced very significant results and it is the first report to produce such hierarchical networks for these pathways. The third problem dealt with developing another algorithm called the top-down graphical Gaussian model that identifies the network governed by a specific TF. The network produced by the algorithm is proven to be of very high accuracy.
Resumo:
BACKGROUND: The RUNX1 transcription factor gene is frequently mutated in sporadic myeloid and lymphoid leukemia through translocation, point mutation or amplification. It is also responsible for a familial platelet disorder with predisposition to acute myeloid leukemia (FPD-AML). The disruption of the largely unknown biological pathways controlled by RUNX1 is likely to be responsible for the development of leukemia. We have used multiple microarray platforms and bioinformatic techniques to help identify these biological pathways to aid in the understanding of why RUNX1 mutations lead to leukemia. RESULTS: Here we report genes regulated either directly or indirectly by RUNX1 based on the study of gene expression profiles generated from 3 different human and mouse platforms. The platforms used were global gene expression profiling of: 1) cell lines with RUNX1 mutations from FPD-AML patients, 2) over-expression of RUNX1 and CBFbeta, and 3) Runx1 knockout mouse embryos using either cDNA or Affymetrix microarrays. We observe that our datasets (lists of differentially expressed genes) significantly correlate with published microarray data from sporadic AML patients with mutations in either RUNX1 or its cofactor, CBFbeta. A number of biological processes were identified among the differentially expressed genes and functional assays suggest that heterozygous RUNX1 point mutations in patients with FPD-AML impair cell proliferation, microtubule dynamics and possibly genetic stability. In addition, analysis of the regulatory regions of the differentially expressed genes has for the first time systematically identified numerous potential novel RUNX1 target genes. CONCLUSION: This work is the first large-scale study attempting to identify the genetic networks regulated by RUNX1, a master regulator in the development of the hematopoietic system and leukemia. The biological pathways and target genes controlled by RUNX1 will have considerable importance in disease progression in both familial and sporadic leukemia as well as therapeutic implications.
Resumo:
Dr. Gates traces the history of physics leading to the hunt for the Higgs particle and confirmation of its existence in March 2013.