967 resultados para Terminal Teletraffic
Resumo:
Sperm ultrastructure is examined and described for the actinocyclidid nudibranchs Actinocyclus verrucosus, Hallaxa iju and Hallaxa indecora. Although general characteristics were consistent with previously described heterobranch observations, present investigations revealed ultrastructural synapomorphies for the family based on the morphology of the terminal region of the spermatozoon. In actinocyclidids, the axonemal microtubules penetrate for some distance beyond the annulus, and the annular accessory body elongates to completely seal the terminal region. Chromodoris also has an annular accessory body that completely seals the axoneme and terminal region, but it does not extend far beyond the annulus, and it is possible that these states were derived independently. Cytochemical staining confirmed that there was no glycogen present in the posterior region of the sperm for H. indecora or Chromodoris kuniei. However, representatives of other chromodoridid genera (Noumea, Risbecia) have an axoneme that penetrates through the entire annular complex, after which it is sheathed by a glycogen deposit. Similarities in the acrosomal complex support the proposed sister group relationship between the Actinocyclidae and Chromodorididae.
Resumo:
The mammalian long-chain acyl-CoA thioesterase, the enzyme that catalyses the hydrolysis of acyl-CoAs to free fatty acids, contains two fused 4HBT (4-hydroxybenzoyl-CoA thioesterase) motifs. The C-terminal domain of the mouse long-chain acyl-CoA thioesterase (Acot7) has been expressed in bacteria and crystallized. The crystals were obtained by vapour diffusion using PEG 2000 MME as precipitant at pH 7.0 and 290 K. The crystals have the symmetry of space group R32 ( unit-cell parameters a = b = 136.83, c = 99.82 angstrom, gamma = 120 degrees). Two molecules are expected in the asymmetric unit. The crystals diffract to 2.4 angstrom resolution using the laboratory X-ray source and are suitable for crystal structure determination.
Resumo:
The RKKEE cluster of charged residues located within the cytoplasmic helix of the bacterial mechanosensitive channel, MscL, is essential for the channel function. The structure of MscL determined by x-ray crystallography and electron paramagnetic resonance spectroscopy has revealed discrepancies toward the C-terminus suggesting that the structure of the C-terminal helical bundle differs depending on the pH of the cytoplasm. In this study we examined the effect of pH as well as charge reversal and residue substitution within the RKKEE cluster on the mechanosensitivity of Escherichia coli MscL reconstituted into liposomes using the patch-clamp technique. Protonation of either positively or negatively charged residues within the cluster, achieved by changing the experimental pH or residue substitution within the RKKEE cluster, significantly increased the free energy of activation for the MscL channel due to an increase in activation pressure. Our data suggest that the orientation of the C-terminal helices relative to the aqueous medium is pH dependent, indicating that the RKKEE cluster functions as a proton sensor by adjusting the channel sensitivity to membrane tension in a pH-dependent fashion. A possible implication of our results for the physiology of bacterial cells is briefly discussed.
Resumo:
Background There is limited information regarding the clinical utility of amino-terminal pro-B-type natriuretic pepticle (NT-proBNP) for the detection of left ventricular (LV) dysfunction in the community. We evaluated predictors of circulating NT-proBNP levels and determined the utility of NT-proBNP to detect systolic and diastolic LV dysfunction in older adults. Methods. A population-based sample of 1229 older adults (mean age 69.4 years, 50.1% women) underwent echocardiographic assessment of cardiac structure and function and measurement of circulating NT-proBNP levels. Results Predictors of NT-proBNP included age, female sex, body mass index, and cardiorenal parameters (diastolic dysfunction [DID] severity; LV mass and left atrial volume; right ventricular overload; decreasing ejection fraction [EF] and creatinine clearance). The performance of NT-proBNP to detect any degree of LV dysfunction, including mild DID, was poor (area under the curve 0.56-0.66). In contrast, the performance of NT-proBNP for the detection of EF 0.90 regardless of age and sex; history of hypertension, diabetes, coronary artery disease; or body mass category. The ability of NT-proBNP to detect EF
Resumo:
The c-Jun N-terminal kinases (JNKs) are members of a larger group of serine/ threonine (Ser/Thr) protein kinases from the mitogen-activated protein kinase family. JNKs were originally identified as stress-activated protein kinases in the livers of cycloheximide-challenged rats. Their subsequent purification, cloning, and naming as JNKs have emphasized their ability to phosphorylate and activate the transcription factor c-Jun. Studies of c-Jun and related transcription factor substrates have provided clues about both the preferred substrate phosphorylation sequences and additional docking domains recognized by JNK There are now more than 50 proteins shown to be substrates for JNK These include a range of nuclear substrates, including transcription factors and nuclear hormone receptors, heterogeneous nuclear ribonucleoprotein K and the Pol I-specific transcription factor TIF-IA, which regulates ribosome synthesis. Many nonnuclear substrates have also been characterized, and these are involved in protein degradation (e.g., the E3 ligase Itch), signal transduction (e.g., adaptor and scaffold proteins and protein kinases), apoptotic cell death (e.g., mitochondrial Bcl2 family members), and cell movement (e.g., paxillin, DCX, microtubule-associated proteins, the stathmin family member SCG10, and the intermediate filament protein keratin 8). The range of JNK actions in the cell is therefore likely to be complex. Further characterization of the substrates of JNK should provide clearer explanations of the intracellular actions of the JNKs and may allow new avenues for targeting the JNK pathways with therapeutic agents downstream of JNK itself.
Resumo:
Agrin is a proteoglycan secreted by motor neurite terminals that functions to initiate and maintain AChR clusters at the nerve terminal. This led to the theory that neurite terminals decide where neuromuscular synapses form by secreting agrin. However, initiation of AChR clustering occurs in the absence of the innervating motoneuron and in the absence of agrin. In this instance, the muscle, not the nerve, is deciding the location of neuromuscular synapses by drawing neurite terminals towards pre-existing AChR clusters. If this were true, one would expect the initial innervation patterns to be the same in agrin-deficient mice and wild-type mice. To test this we quantified the intramuscular axonal branching and synapse formation in the diaphragm at E14.5 in agrin-deficient mice and wild-type mice. Heterozygote mothers were anaesthetised with Nembutal (30 mg) and killed via cervical dislocation. In the diaphragm, the nerve trunk runs down the centre of the muscle and extends branches primarily toward the lateral side. In agrin-deficient mice however, we found significantly more branches exited the phrenic nerve trunk, branched in the periphery and extended further on the medial side. Moreover, we found that the percentage α-bungarotoxin/synaptophysin colocalisations, markers of pre- and postsynaptic differentiation, respectively, was the same in agrin-deficient mice and wild-type mice. These results show that initial innervation patterns are not the same in agrin-deficient mice and wild-type mice indicating neurite terminals, not muscle, decide the placement of neuromuscular synapses in the absence of agrin.
Resumo:
The Saccharomyces cerevisiae gene FPS1 encodes an aquaglyceroporin of the major intrinsic protein (MIP) family. The main function of Fps1p seems to be the efflux of glycerol in the adaptation of the yeast cell to lower external osmolarity. Fps1p is an atypical member of the family, because the protein is much larger (669 amino acids) than most MIPs due to long hydrophilic extensions in both termini. We have shown previously that a short domain in the N-terminal extension of the protein is required for restricting glycerol transport through the channel (Tamás, M. J., Karlgren, S., Bill, R. M., Hedfalk, K., Allegri, L., Ferreira, M., Thevelein, J. M., Rydström, J., Mullins, J. G. L., and Hohmann, S. (2003) J. Biol. Chem. 278, 6337-6345). Deletion of the N-terminal domain results in an unregulated channel, loss of glycerol, and osmosensitivity. In this work we have investigated the role of the Fps1p C terminus (139 amino acids). A set of eight truncations has been constructed and tested in vivo in a yeast fps1Δ strain. We have performed growth tests, membrane localization following cell fractionation, and glycerol accumulation measurements as well as an investigation of the osmotic stress response. Our results show that the C-terminal extension is also involved in restricting transport through Fps1p. We have identified a sequence of 12 amino acids, residues 535-546, close to the sixth transmembrane domain. This element seems to be important for controlling Fps1p function. Similar to the N-terminal domain, the C-terminal domain is amphiphilic and has a potential to dip into the membrane.
Resumo:
Third Generation cellular communication systems are expected to support mixed cell architecture in which picocells, microcells and macrocells are used to achieve full coverage and increase the spectral capacity. Supporting higher numbers of mobile terminals and the use of smaller cells will result in an increase in the number of handovers, and consequently an increase in the time delays required to perform these handovers. Higher time delays will generate call interruptions and forced terminations, particularly for time sensitive applications like real-time multimedia and data services. Currently in the Global System for Mobile communications (GSM), the handover procedure is initiated and performed by the fixed part of the Public Land Mobile Network (PLMN). The mobile terminal is only capable of detecting candidate base stations suitable for the handover; it is the role of the network to interrogate a candidate base station for a free channel. Handover signalling is exchanged via the fixed network and the time delay required to perform the handover is greatly affected by the levels of teletraffic handled by the network. In this thesis, a new handover strategy is developed to reduce the total time delay for handovers in a microcellular system. The handover signalling is diverted from the fixed network to the air interface to prevent extra delays due to teletraffic congestion, and to allow the mobile terminal to exchange signalling directly with the candidate base station. The new strategy utilises Packet Reservation Multiple Access (PRMA) technique as a mechanism to transfer the control of the handover procedure from the fixed network to the mobile terminal. Simulation results are presented to show a dramatic reduction in the handover delay as compared to those obtained using fixed channel allocation and dynamic channel allocation schemes.
Resumo:
The technique of growing human leukaemic cells in diffusion chambers was developed to enable chemicals to be assessed for their ability to induce terminal differentiation. HL-60 promyelocytic leukaemia cell growth, in a lucite chamber with a Millipore filter, was optimised by use of a lateral incision site. Chambers were constructed using 0.45um filters and contained 150ul of serum-free HL-60 cells at a density of 1x106 cells/ml. The chambers were implanted into CBA/Ca mice and spontaneous terminal differentiation of the cells to granulocytes was prevented by the use of serum-free medium. Under these conditions there was an initial growth lag of 72 hours and a logarithmic phase of growth for 96 hours; the cell number reached a plateau after 168 hours of culture in vivo. The amount of drug in the plasma of the animal and in chambers that had been implanted for 5 days, was determined after a single ip injection of equitoxic doses of N-methylformamide, N-ethylformamide, tetramethylurea, N-dibutylformamide, N-tetramethylbutylformamide and hexamethylenebisacetamide. Concentrations of both TMU and HMBA were obtained in the plasma and in the chamber which were pharmacologically effective for the induction of differentiation of HL-60 cells in vitro, that is 12mM TMU and 5mM HMBA. A 4 day regime of treatment of animals implanted with chambers demonstrated that TMU and HMBA induced terminal differentiation of 50% and 35%, respectively, of the implanted HL-60 cells to granulocyte-like cells, assessed by measurement of functional and biochemical markers of maturity. None of the other agents attained concentrations in the plasma that were pharmacologically effective for the induction of differentiation of the cells in vitro and were unable to induce the terminal differentiation of the cells in vivo.