938 resultados para Teenage automobile drivers
Resumo:
A comprehensive assessment of the liquidity development in the Iberian power futures market managed by OMIP (“Operador do Mercado Ibérico de Energia, Pólo Português”) in its first 4 years of existence is performed. This market started on July 2006. A regression model tracking the evolution of the traded volumes in the continuous market is built as a function of 12 potential liquidity drivers. The only significant drivers are the traded volumes in OMIP compulsory auctions, the traded volumes in the “Over The Counter” (OTC) market, and the OTC cleared volumes in OMIP clearing house (OMIClear). Furthermore, the enrollment of financial members shows strong correlation with the traded volumes in the continuous market. OMIP liquidity is still far from the levels reached by the most mature European markets (Nord Pool and EEX). The market operator and its clearing house could develop efficient marketing actions to attract new entrants active in the spot market (energy intensive industries, suppliers, and small producers) as well as volumes from the opaque OTC market, and to improve the performance of existing illiquid products. An active dialogue with all the stakeholders (market participants, spot market operator, and supervisory authorities) will help to implement such actions.
Resumo:
Innovation has been identified as the single most relevant element in fuelling corporations’ competitive advantage and ultimate value creation. Corporations no longer rely on a single, linear structure of innovation; the new paradigm of open innovation opens up new possibilities of organizing innovation within the ecosystem, thus giving rise to new drivers for value creation. These value drivers have an impact on the strategic position of the firm and have the ability to create superior financial performance. In this paper we explore the close relationship between open innovation and value creation and propose a framework to analyze this process as well as the most critical elements involved.
Resumo:
La agricultura es uno de los sectores más afectados por el cambio climático. A pesar de haber demostrado a lo largo de la historia una gran capacidad para adaptarse a nuevas situaciones, hoy en día la agricultura se enfrenta a nuevos retos tales como satisfacer un elevado crecimiento en la demanda de alimentos, desarrollar una agricultura sostenible con el medio ambiente y reducir las emisiones de gases de efecto invernadero. El potencial de adaptación debe ser definido en un contexto que incluya el comportamiento humano, ya que éste juega un papel decisivo en la implementación final de las medidas. Por este motivo, y para desarrollar correctamente políticas que busquen influir en el comportamiento de los agricultores para fomentar la adaptación a estas nuevas condiciones, es necesario entender previamente los procesos de toma de decisiones a nivel individual o de explotación, así como los efectos de los factores que determinan las barreras o motivaciones de la implementación de medidas. Esta Tesis doctoral trata de profundizar en el análisis de factores que influyen en la toma de decisiones de los agricultores para adoptar estrategias de adaptación al cambio climático. Este trabajo revisa la literatura actual y desarrolla un marco metodológico a nivel local y regional. Dos casos de estudio a nivel local (Doñana, España y Makueni, Kenia) han sido llevados a cabo con el fin de explorar el comportamiento de los agricultores hacia la adaptación. Estos casos de estudio representan regiones con notables diferencias en climatología, impactos del cambio climático, barreras para la adaptación y niveles de desarrollo e influencia de las instituciones públicas y privadas en la agricultura. Mientras el caso de estudio de Doñana representa un ejemplo de problemas asociados al uso y escasez del agua donde se espera que se agraven en el futuro, el caso de estudio de Makueni ejemplifica una zona fuertemente amenazada por las predicciones de cambio climático, donde adicionalmente la falta de infraestructura y la tecnología juegan un papel crucial para la implementación de la adaptación. El caso de estudio a nivel regional trata de generalizar en África el comportamiento de los agricultores sobre la implementación de medidas. El marco metodológico que se ha seguido en este trabajo abarca una amplia gama de enfoques y métodos para la recolección y análisis de datos. Los métodos utilizados para la toma de datos incluyen la implementación de encuestas, entrevistas, talleres con grupos de interés, grupos focales de discusión, revisión de estudios previos y bases de datos públicas. Los métodos analíticos incluyen métodos estadísticos, análisis multi‐criterio para la toma de decisiones, modelos de optimización de uso del suelo y un índice compuesto calculado a través de indicadores. Los métodos estadísticos se han utilizado con el fin de evaluar la influencia de los factores socio‐económicos y psicológicos sobre la adopción de medidas de adaptación. Dentro de estos métodos se incluyen regresiones logísticas, análisis de componentes principales y modelos de ecuaciones estructurales. Mientras que el análisis multi‐criterio se ha utilizado con el fin de evaluar las opciones de adaptación de acuerdo a las opiniones de las diferentes partes interesadas, el modelo de optimización ha tenido como fin analizar la combinación óptima de medidas de adaptación. El índice compuesto se ha utilizado para evaluar a nivel regional la implementación de medidas de adaptación en África. En general, los resultados del estudio ponen de relieve la gran importancia de considerar diferentes escalas espaciales a la hora de evaluar la implementación de medidas de adaptación al cambio climático. El comportamiento de los agricultores es diferente entre lugares considerados a una escala local relativamente pequeña, por lo que la generalización de los patrones del comportamiento a escalas regionales o globales resulta relativamente compleja. Los resultados obtenidos han permitido identificar factores determinantes tanto socioeconómicos como psicológicos y calcular su efecto sobre la adopción de medidas de adaptación. Además han proporcionado una mejor comprensión del distinto papel que desempeñan los cinco tipos de capital (natural, físico, financiero, social y humano) en la implementación de estrategias de adaptación. Con este trabajo se proporciona información de gran interés en los procesos de desarrollo de políticas destinadas a mejorar el apoyo de la sociedad a tomar medidas contra el cambio climático. Por último, en el análisis a nivel regional se desarrolla un índice compuesto que muestra la probabilidad de adoptar medidas de adaptación en las regiones de África y se analizan las causas que determinan dicha probabilidad de adopción de medidas. ABSTRACT Agriculture is and will continue to be one of the sectors most affected by climate change. Despite having demonstrated throughout history a great ability to adapt, agriculture today faces new challenges such as meeting growing food demands, developing sustainable agriculture and reducing greenhouse gas emissions. Adaptation policies planned on global, regional or local scales are ultimately implemented in decision‐making processes at the farm or individual level so adaptation potentials have to be set within the context of individual behaviour and regional institutions. Policy instruments can play a formative role in the adoption of such policies by addressing incentives/disincentives that influence farmer’s behaviour. Hence understanding farm‐level decision‐making processes and the influence of determinants of adoption is crucial when designing policies aimed at fostering adoption. This thesis seeks to analyse the factors that influence decision‐making by farmers in relation to the uptake of adaptation options. This work reviews the current knowledge and develops a methodological framework at local and regional level. Whilst the case studies at the local level are conducted with the purpose of exploring farmer’s behaviour towards adaptation the case study at the regional level attempts to up‐scale and generalise theory on adoption of farmlevel adaptation options. The two case studies at the local level (Doñana, Spain and Makueni, Kenya) encompass areas with different; climates, impacts of climate change, adaptation constraints and limits, levels of development, institutional support for agriculture and influence from public and private institutions. Whilst the Doñana Case Study represents an area plagued with water‐usage issues, set to be aggravated further by climate change, Makueni Case study exemplifies an area decidedly threatened by climate change where a lack of infrastructure and technology plays a crucial role in the uptake of adaptation options. The proposed framework is based on a wide range of approaches for collecting and analysing data. The approaches used for data collection include the implementation of surveys, interviews, stakeholder workshops, focus group discussions, a review of previous case studies, and public databases. The analytical methods include statistical approaches, multi criteria analysis for decision‐making, land use optimisation models, and a composite index based on public databases. Statistical approaches are used to assess the influence of socio‐economic and psychological factors on the adoption or support for adaptation measures. The statistical approaches used are logistic regressions, principal component analysis and structural equation modelling. Whilst a multi criteria analysis approach is used to evaluate adaptation options according to the different perspectives of stakeholders, the optimisation model analyses the optimal combination of adaptation options. The composite index is developed to assess adoption of adaptation measures in Africa. Overall, the results of the study highlight the importance of considering various scales when assessing adoption of adaptation measures to climate change. As farmer’s behaviour varies at a local scale there is elevated complexity when generalising behavioural patterns for farmers at regional or global scales. The results identify and estimate the effect of most relevant socioeconomic and psychological factors that influence adoption of adaptation measures to climate change. They also provide a better understanding of the role of the five types of capital (natural, physical, financial, social, and human) on the uptake of farm‐level adaptation options. These assessments of determinants help to explain adoption of climate change measures and provide helpful information in order to design polices aimed at enhancing societal support for adaptation policies. Finally the analysis at the regional level develops a composite index which suggests the likelihood of the regions in Africa to adopt farm‐level adaptation measures and analyses the main causes of this likelihood of adoption.
Resumo:
In this paper the daily temporal and spatial behavior of electric vehicles (EVs) is modelled using an activity-based (ActBM) microsimulation model for Flanders region (Belgium). Assuming that all EVs are completely charged at the beginning of the day, this mobility model is used to determine the percentage of Flemish vehicles that cannot cover their programmed daily trips and need to be recharged during the day. Assuming a variable electricity price, an optimization algorithm determines when and where EVs can be recharged at minimum cost for their owners. This optimization takes into account the individual mobility constraint for each vehicle, as they can only be charged when the car is stopped and the owner is performing an activity. From this information, the aggregated electric demand for Flanders is obtained, identifying the most overloaded areas at the critical hours. Finally it is also analyzed what activities EV owners are underway during their recharging period. From this analysis, different actions for public charging point deployment in different areas and for different activities are proposed.
Resumo:
When one nerve cell acts on another, its postsynaptic effect can vary greatly. In sensory systems, inputs from “drivers” can be differentiated from those of “modulators.” The driver can be identified as the transmitter of receptive field properties; the modulator can be identified as altering the probability of certain aspects of that transmission. Where receptive fields are not available, the distinction is more difficult and currently is undefined. We use the visual pathways, particularly the thalamic geniculate relay for which much relevant evidence is available, to explore ways in which drivers can be distinguished from modulators. The extent to which the distinction may apply first to other parts of the thalamus and then, possibly, to other parts of the brain is considered. We suggest the following distinctions: Cross-correlograms from driver inputs have sharper peaks than those from modulators; there are likely to be few drivers but many modulators for any one cell; and drivers are likely to act only through ionotropic receptors having a fast postsynaptic effect whereas modulators also are likely to activate metabotropic receptors having a slow and prolonged postsynaptic effect.
Resumo:
Peer reviewed
Resumo:
Since the passage of the Federal-Aid Highway Act of 1956, the automobile has become the primary form of transportation on the Mississippi Gulf Coast. As the rate of motor vehicle use continues to rise faster than population growth, the benefits of the current transportation system are coming at a price that rivals annual household expenditures for housing. Furthermore, the automobile-centric transportation system incurs environmental costs. Carbon dioxide emissions, motor fuel use, health care costs for chronic illness, and the loss and impairment of natural resources due to sprawling development, continue to escalate. This project analyzes the environmental costs associated with automobile-centric planning for the urbanized area of the Mississippi Gulf Coast and compares these costs to those of alternative transportation modes.
Resumo:
ABSTRACT \ Employers know that to have a successful organization, they must have the right people in the right jobs. But how will they know whom to place where? The development of a model based upon an individual's personality traits and strengths, and how to best use them, is a good place to start. Employees working in positions in which their traits and strengths are maximized enjoy work more, are more efficient, and are less apt to be absent or to look for work elsewhere. It is a mutually beneficial process of selection for both employers and employees. This model illustrates the process in an automobile and property insurance claims operation through utilization of the Myers-Briggs Type Indicators and the StrengthsFinder Profiles.
Resumo:
Car Fluff samples collected from a shredding plant in Italy were classified based on particle size, and three different size fractions were obtained in this way. A comparison between these size fractions and the original light fluff was made from two different points of view: (i) the properties of each size fraction as a fuel were evaluated and (ii) the pollutants evolved when each size fraction was subjected to combustion were studied. The aim was to establish which size fraction would be the most suitable for the purposes of energy recovery. The light fluff analyzed contained up to 50 wt.% fines (particle size < 20 mm). However, its low calorific value and high emissions of polychlorinated dioxins and furans (PCDD/Fs), generated during combustion, make the fines fraction inappropriate for energy recovery, and therefore, landfilling would be the best option. The 50–100 mm fraction exhibited a high calorific value and low PCDD/F emissions were generated when the sample was combusted, making it the most suitable fraction for use as refuse-derived fuel (RDF). Results obtained suggest that removing fines from the original ASR sample would lead to a material product that is more suitable for use as RDF.