994 resultados para TROPICAL FOREST
Resumo:
Bees are considered one of the most efficient pollinators. Therefore, they have Indisputable role in the plants reproduction, since they increase the quality and quantity of fruit and seeds, and thus they help the ecosystems maintenance. Cerrado is one of the most affected ecosystems due to the growth of human activities, drastically reducing its biodiversity. The faunistic analysis identifies the species and the size of the populations, and can also indicate the degree of environmental Impact on a particular area. Surveys on flower-visiting hymenoptera in a cerradao area, with 40ha, in the Experimental Station of Itiparina (SP), were conducted every fifteen days from March 2003 to February 2004. From 181 insects collected, the Apidae family was represented by the largest number of species and individuals. The species Apis mellifera (55.8%), Trigona spinipes (14.4%) and Exomalopsis (Exomalopsis) sp. (8.3%) were the most prevalent fit the area. Among the bees species collected, 30.8% were classified as sociable and 69.2% as solitary. Considering all hymenoptera collected, 59.7% preferred the morning period and 40.3% the afternoon period for foraging and/or visiting. The Diversity index (Shannon-Wiener) H was 1.6933, V(H) = 0.0123 and Uniformity index E = 0.5652, following pattern found in other areas of cerrado.
Resumo:
QTL mapping provides usefull information for breeding programs since it allows the estimation of genomic locations and genetic effects of chromossomal regions related to the expression of quantitative traits. The objective of this study was to map QTL related to several agronomic important traits associated with grain yield: ear weight (EW), prolificacy (PROL), ear number (NE), ear length (EL) and diameter (ED), number of rows on the ear (NRE) and number of kernels per row on the ear (NKPR). Four hundred F-2:3 tropical maize progenies were evaluated in five environments in Piracicaba, Sao Paulo, Brazil. The genetic map was previously estimated and had 117 microssatelite loci with average distance of 14 cM. Data was analysed using Composite Interval Mapping for each trait. Thirty six QTL were mapped and related to the expression of EW (2), PROL (3), NE (2), EL (5), ED (5), NRE (10), NKPR (5). Few QTL were mapped since there was high GxE interaction. Traits EW, PROL and EN showed high genetic correlation with grain yield and several QTL mapped to similar genomic regions, which could cause the observed correlation. However, further analysis using apropriate statistical models are required to separate linked versus pleiotropic QTL. Five QTL (named Ew1, Ne1, Ed3, Nre3 and Nre10) had high genetic effects, explaining from 10.8% (Nre3) to 16.9% (Nre10) of the phenotypic variance, and could be considered in further studies.
Resumo:
The effects of temperature on the life table, and of seston quality on the individual growth and reproduction of cladocerans from a tropical lake were tested in the laboratory. Life-table experiments were carried out at 17 degrees C, 23 degrees C, and 27 degrees C. Growth bioassays tested the influence of natural seston fractions, separated by net filtration, on cladocerans. The treatments were: (1) total seston plus Scenedesmus spinosus (1 mg C.L(-1)), (2) seston <= 36 mu m, and (3) seston >36 mu m. Phytoplankton composition, density, and biomass were evaluated during growth experiments, together with sestonic carbon, nitrogen, and phosphorus concentrations. The intrinsic rates of natural increase were higher for Moina micrura and Daphnia ambigua at 27 degrees C compared to 17 degrees C. The age at first reproduction of both species was delayed at 17 degrees C. Growth rates and fecundity of M. micrura were higher in the seston fraction <= 36 mu m than in the fraction > 36 mu m. Higher growth rates and fecundity of Moina minuta were observed in the seston enriched with the green alga in comparison to the seston <= 36 mu m and > 36 mu m. Bosmina longirostris was unable to reproduce at 17 degrees C and to grow in the seston > 36 mu m in one experiment. High densities and/or biomass of large colonial and filamentous algae present in the larger seston fraction could have contributed to reduce growth and reproduction. Episodes of food-quantity limitation may occur, but there was no evidence of mineral limitation, although seston C:P and C:N ratios were always above the limiting values assumed for temperate water bodies. The C:P and C:N ratios arc highly influenced by carbon that originates primarily from resuspended detritus from the lake.
Resumo:
We studied the community ecology of trap-nesting bees in two forest fragments of the State of Sao Paulo, Brazil, during two years, utilizing bamboo canes and tubes made of black cardboard as trap nests. The traps were inspected once a month with an otoscope. One hundred and fifteen nests were obtained at Estacao Ecologica de Paulo de Faria, Paulo de Faria (EEPF). These included nine species belonging to five genera and two families. At Santa Cecilia Farm (SCF), 12 species belonging to seven genera and three families built 392 nests. Natural enemies reared from nests of both areas included Hymenoptera, Diptera and Coleoptera. Species richness was similar between the areas but the communities differed considerably in species composition. The higher diversity found at EEPF was due to more even distribution of the species. No difference was observed between the numbers of nests built in each year in each area. Although the species richness was lower in the cool/dry season of both years at SCF, and in the first year at EEPF, the nesting frequencies did not differ between seasons for both the overall community but for each of the most abundant species. No annual fluctuation in the frequencies of nesting was observed. As temperature and precipitation were not found to be significantly different between the two years of study in each area, we concluded that climatic stability resulted in population stability.
Resumo:
Background: In Brazil, 99% of malaria cases are concentrated in the Amazon, and malaria's spatial distribution is commonly associated with socio-environmental conditions on a fine landscape scale. In this study, the spatial patterns of malaria and its determinants in a rural settlement of the Brazilian agricultural reform programme called ""Vale do Amanhecer"" in the northern Mato Grosso state were analysed. Methods: In a fine-scaled, exploratory ecological study, geocoded notification forms corresponding to malaria cases from 2005 were compared with spectral indices, such as the Normalized Difference Vegetation Index (NDVI) and the third component of the Tasseled Cap Transformation (TC_3) and thematic layers, derived from the visual interpretation of multispectral TM-Landsat 5 imagery and the application of GIS distance operators. Results: Of a total of 336 malaria cases, 102 (30.36%) were caused by Plasmodium falciparum and 174 (51.79%) by Plasmodium vivax. Of all the cases, 37.6% (133 cases) were from residents of a unique road. In total, 276 cases were reported for the southern part of the settlement, where the population density is higher, with notification rates higher than 10 cases per household. The local landscape mostly consists of open areas (38.79 km(2)). Training forest occupied 27.34 km(2) and midsize vegetation 7.01 km(2). Most domiciles with more than five notified malaria cases were located near areas with high NDVI values. Most domiciles (41.78%) and malaria cases (44.94%) were concentrated in areas with intermediate values of the TC_3, a spectral index representing surface and vegetation humidity. Conclusions: Environmental factors and their alteration are associated with the occurrence and spatial distribution of malaria cases in rural settlements.
Resumo:
Background: CD4(+)CD25(high) regulatory T (T(Reg)) cells modulate antigen-specific T cell responses, and can suppress anti-viral immunity. In HTLV-1 infection, a selective decrease in the function of T(Reg) cell mediated HTLV-1-tax inhibition of FOXP3 expression has been described. The purpose of this study was to assess the frequency and phenotype of T(Reg) cells in HTLV-1 asymptomatic carriers and in HTLV-1-associated neurological disease (HAM/TSP) patients, and to correlate with measures of T cell activation. Results: We were able to confirm that HTLV-1 drives activation, spontaneous IFN gamma production, and proliferation of CD4+ T cells. We also observed a significantly lower proportion of CTLA-4(+) T(Reg) cells (CD4(+)CD25(high) T cells) in subjects with HAM/TSP patients compared to healthy controls. Ki-67 expression was negatively correlated to the frequency of CTLA-4(+) T(Reg) cells in HAM/TSP only, although Ki-67 expression was inversely correlated with the percentage of CD127(low) T(Reg) cells in healthy control subjects. Finally, the proportion of CD127(low) T(Reg) cells correlated inversely with HTLV-1 proviral load. Conclusion: Taken together, the results suggest that T(Reg) cells may be subverted in HAM/TSP patients, which could explain the marked cellular activation, spontaneous cytokine production, and proliferation of CD4(+) T cells, in particular those expressing the CD25(high)CD127(low) phenotype. T(Reg) cells represent a potential target for therapeutic intervention for patients with HTLV-1-related neurological diseases.
Resumo:
Based on previous results obtained from observations and linear wave theory analysis, the hypothesis that large-scale patterns can generate extreme cold events in southeast South America through the propagation of remotely excited Rossby waves was already suggested. This work will confirm these findings and extend their analysis through a series of numerical experiments using a primitive equation model where waves are excited by a thermal forcing situated in positions chosen according to observed convection anomalies over the equatorial region. The basic state used for these experiments is a composite of austral winters with maximum and minimum frequency of occurrence of generalized frosts that can affect a large area known as the Wet Pampas located in the central and eastern part of Argentina. The results suggest that stationary Rossby waves may be one important mechanism linking anomalous tropical convection with the extreme cold events in the Wet Pampas. The combination of tropical convection and a specific basic state can generate the right environment to guide the Rossby waves trigged by the tropical forcing towards South America. Depending on the phase of the waves entering the South American continent, they can favour the advection of anomalous wind at low levels from the south carrying cold and dry air over the whole southern extreme of the continent, producing a generalized frost in the Wet Pampa region. On the other hand, when a basic state based on the composites of minimum frosts is used, an anomalous anticyclone over the southern part of the continent generates a circulation with a south-southeast wind which brings maritime air and therefore humidity over the Wet Pampas region, creating negative temperature anomalies only over the northeastern part of the region. Under these conditions even if frosts occur they would not be generalized, as observed for the other basic state with maximum frequency of occurrence of generalized frosts.
Resumo:
A new species of Spiranthera A. St.-Hil. (Rutaceae, Galipeinae) is illustrated and described from Espirito Santo, Brazil. Spiranthera atlantica Pi rani represents the first species record for the genus in the Atlantic Forest of eastern Brazil. The new (axon resembles the Amazonian S. guianensis Sandwith but differs by its smaller, few-flowered inflorescences and by the fruit and leaflet morphology.
Resumo:
The study of life history variation is central to the evolutionary theory. In many ectothermic lineages, including lizards, life history traits are plastic and relate to several sources of variation including body size, which is both a factor and a life history trait likely to modulate reproductive parameters. Larger species within a lineage, for example tend to be more fecund and have larger clutch size, but clutch size may also be influenced by climate, independently of body size. Thus, the study of climatic effects on lizard fecundity is mandatory on the current scenario of global climatic change. We asked how body and clutch size have responded to climate through time in a group of tropical lizards, the Tropidurinae, and how these two variables relate to each other. We used both traditional and phylogenetic comparative methods. Body and clutch size are variable within Tropidurinae, and both traits are influenced by phylogenetic position. Across the lineage, species which evolved larger size produce more eggs and neither trait is influenced by temperature components. A climatic component of precipitation, however, relates to larger female body size, and therefore seems to exert an indirect relationship on clutch size. This effect of precipitation on body size is likely a correlate of primary production. A decrease in fecundity is expected for Tropidurinae species on continental landmasses, which are predicted to undergo a decrease in summer rainfall.
Resumo:
This study was conducted in the Private Reserve Mata do Jambreiro (912 ha), localized in the Iron Quadrangle, Minas Gerais, southeastern portion of the Espinhaco Range, which is predominantly covered by semideciduous seasonal montane forest. Three topographically and physiognomic similar areas located within a continuum forest fragment, distant by 1.3 to 1.5 km were sampled by the point-quadrat method. In each area, 30 points were marked. Individuals with a minimum perimeter at the breast height (PBH) of 15 cm were sampled, totaling 111 species belonging to 40 families. The most representative family was Fabaceae, with 14.29% of the total number of species. Low floristic similarity (5.3% to 34.4%) was observed between the areas, pointing out the importance of distribution of sample units in continuous fragments. Shannon diversity index (H') found was 4.22 and Pielou equability (J) 0.894. Soil analysis showed some differences in chemical composition between the three studied areas and was an important component for the interpretation of the floristic variation found. The low floristic similarity observed here for close areas justify the requirement of more detailed inventories by Brazilian Environmental Agencies for the legal authorization procedures prior to the establishment of new enterprising projects. Also, the professionals that conduct rapid inventories, mainly the Environmental Consultants, should give more attention to this kind of floristic variation and to the methods used to inventory complex forests.
Resumo:
The stingless bees are among the most abundant and ecologically important social invertebrates in tropical communities. The Neotropical stingless bee Melipona quadrifasciata has two subspecies: M. quadrifasciata quadrifasciata and M. quadrifasciata anthidioides. The main difference between subspecies are the yellow metassomal stripes, which are continuous in M. q. quadrifasciata and discontinuous in M. q. anthidioides. Recently, two populations were described with continuous stripes and inhabiting clearly disjunct areas in relation to M. q. quadrifasciata. We sequenced 852 bp of the mtDNA COI gene from 145 colonies from 56 localities, and for the first time performed a detailed phylogeographic study of a neotropical stingless bee. Phylogenetic analyses revealed the existence of two clades exhibiting a south to north distribution: southern populations comprise the subspecies M. q. quadrifasciata, and northern populations are composed of M. q. anthidioides and two disjunct populations with continuous stripes. The divergence time of these two phylogroups was estimated between 0.233 and 0.840 million years ago in the Pleistocene, a period of climatic changes and geomorphological alterations in the Neotropical region. No evidence of genetic structure in relation to the tergal stripes was found, indicating that the morphological trait regarding the pattern of stripes on tergites is not an accurate diagnostic for the subspecies of M. quadrifasciata.
Resumo:
The Amazon Basin provides an excellent environment for studying the sources, transformations, and properties of natural aerosol particles and the resulting links between biological processes and climate. With this framework in mind, the Amazonian Aerosol Characterization Experiment (AMAZE-08), carried out from 7 February to 14 March 2008 during the wet season in the central Amazon Basin, sought to understand the formation, transformations, and cloud-forming properties of fine-and coarse-mode biogenic aerosol particles, especially as related to their effects on cloud activation and regional climate. Special foci included (1) the production mechanisms of secondary organic components at a pristine continental site, including the factors regulating their temporal variability, and (2) predicting and understanding the cloud-forming properties of biogenic particles at such a site. In this overview paper, the field site and the instrumentation employed during the campaign are introduced. Observations and findings are reported, including the large-scale context for the campaign, especially as provided by satellite observations. New findings presented include: (i) a particle number-diameter distribution from 10 nm to 10 mu m that is representative of the pristine tropical rain forest and recommended for model use; (ii) the absence of substantial quantities of primary biological particles in the submicron mode as evidenced by mass spectral characterization; (iii) the large-scale production of secondary organic material; (iv) insights into the chemical and physical properties of the particles as revealed by thermodenuder-induced changes in the particle number-diameter distributions and mass spectra; and (v) comparisons of ground-based predictions and satellite-based observations of hydrometeor phase in clouds. A main finding of AMAZE-08 is the dominance of secondary organic material as particle components. The results presented here provide mechanistic insight and quantitative parameters that can serve to increase the accuracy of models of the formation, transformations, and cloud-forming properties of biogenic natural aerosol particles, especially as related to their effects on cloud activation and regional climate.
Resumo:
Vertical number fluxes of aerosol particles and vertical fluxes of CO(2) were measured with the eddy covariance method at the top of a 53 m high tower in the Amazon rain forest as part of the LBA (The Large Scale Biosphere Atmosphere Experiment in Amazonia) experiment. The observed aerosol number fluxes included particles with sizes down to 10 nm in diameter. The measurements were carried out during the wet and dry season in 2008. In this study focus is on the dry season aerosol fluxes, with significant influence from biomass burning, and these are compared with aerosol fluxes measured during the wet season. Net particle deposition fluxes dominated in daytime in both seasons and the deposition flux was considerably larger in the dry season due to the much higher dry season particle concentration. The particle transfer velocity increased linearly with increasing friction velocity in both seasons. The difference in transfer velocity between the two seasons was small, indicating that the seasonal change in aerosol number size distribution is not enough for causing any significant change in deposition velocity. In general, particle transfer velocities in this study are low compared to studies over boreal forests. The reasons are probably the high percentage of accumulation mode particles and the low percentage of nucleation mode particles in the Amazon boundary layer, both in the dry and wet season, and low wind speeds in the tropics compared to the midlatitudes. In the dry season, nocturnal particle fluxes behaved very similar to the nocturnal CO(2) fluxes. Throughout the night, the measured particle flux at the top of the tower was close to zero, but early in the morning there was an upward particle flux peak that is not likely a result of entrainment or local pollution. It is possible that these morning upward particle fluxes are associated with emission of primary biogenic particles from the rain forest. Emitted particles may be stored within the canopy during stable conditions at nighttime, similarly to CO(2), and being released from the canopy when conditions become more turbulent in the morning.
Resumo:
As a contribution to the Large-Scale Biosphere-Atmosphere Experiment in Amazonia - Cooperative LBA Airborne Regional Experiment (LBA-CLAIRE-2001) field campaign in the heart of the Amazon Basin, we analyzed the temporal and spatial dynamics of the urban plume of Manaus City during the wet-to-dry season transition period in July 2001. During the flights, we performed vertical stacks of crosswind transects in the urban outflow downwind of Manaus City, measuring a comprehensive set of trace constituents including O(3), NO, NO(2), CO, VOC, CO(2), and H(2)O. Aerosol loads were characterized by concentrations of total aerosol number (CN) and cloud condensation nuclei (CCN), and by light scattering properties. Measurements over pristine rainforest areas during the campaign showed low levels of pollution from biomass burning or industrial emissions, representative of wet season background conditions. The urban plume of Manaus City was found to be joined by plumes from power plants south of the city, all showing evidence of very strong photochemical ozone formation. One episode is discussed in detail, where a threefold increase in ozone mixing ratios within the atmospheric boundary layer occurred within a 100 km travel distance downwind of Manaus. Observation-based estimates of the ozone production rates in the plume reached 15 ppb h(-1). Within the plume core, aerosol concentrations were strongly enhanced, with Delta CN/Delta CO ratios about one order of magnitude higher than observed in Amazon biomass burning plumes. Delta CN/Delta CO ratios tended to decrease with increasing transport time, indicative of a significant reduction in particle number by coagulation, and without substantial new particle nucleation occurring within the time/space observed. While in the background atmosphere a large fraction of the total particle number served as CCN (about 60-80% at 0.6% supersaturation), the CCN/CN ratios within the plume indicated that only a small fraction (16 +/- 12 %) of the plume particles were CCN. The fresh plume aerosols showed relatively weak light scattering efficiency. The CO-normalized CCN concentrations and light scattering coefficients increased with plume age in most cases, suggesting particle growth by condensation of soluble organic or inorganic species. We used a Single Column Chemistry and Transport Model (SCM) to infer the urban pollution emission fluxes of Manaus City, implying observed mixing ratios of CO, NO(x) and VOC. The model can reproduce the temporal/spatial distribution of ozone enhancements in the Manaus plume, both with and without accounting for the distinct (high NO(x)) contribution by the power plants; this way examining the sensitivity of ozone production to changes in the emission rates of NO(x). The VOC reactivity in the Manaus region was dominated by a high burden of biogenic isoprene from the background rainforest atmosphere, and therefore NO(x) control is assumed to be the most effective ozone abatement strategy. Both observations and models show that the agglomeration of NO(x) emission sources, like power plants, in a well-arranged area can decrease the ozone production efficiency in the near field of the urban populated cores. But on the other hand remote areas downwind of the city then bear the brunt, being exposed to increased ozone production and N-deposition. The simulated maximum stomatal ozone uptake fluxes were 4 nmol m(-2) s(-1) close to Manaus, and decreased only to about 2 nmol m(-2) s(-1) within a travel distance >1500 km downwind from Manaus, clearly exceeding the critical threshold level for broadleaf trees. Likewise, the simulated N deposition close to Manaus was similar to 70 kg N ha(-1) a(-1) decreasing only to about 30 kg N ha(-1) a(-1) after three days of simulation.
Resumo:
Atmospheric aerosol particles serving as cloud condensation nuclei (CCN) are key elements of the hydrological cycle and climate. We have measured and characterized CCN at water vapor supersaturations in the range of S=0.10-0.82% in pristine tropical rainforest air during the AMAZE-08 campaign in central Amazonia. The effective hygroscopicity parameters describing the influence of chemical composition on the CCN activity of aerosol particles varied in the range of kappa approximate to 0.1-0.4 (0.16+/-0.06 arithmetic mean and standard deviation). The overall median value of kappa approximate to 0.15 was by a factor of two lower than the values typically observed for continental aerosols in other regions of the world. Aitken mode particles were less hygroscopic than accumulation mode particles (kappa approximate to 0.1 at D approximate to 50 nm; kappa approximate to 0.2 at D approximate to 200 nm), which is in agreement with earlier hygroscopicity tandem differential mobility analyzer (H-TDMA) studies. The CCN measurement results are consistent with aerosol mass spectrometry (AMS) data, showing that the organic mass fraction (f(org)) was on average as high as similar to 90% in the Aitken mode (D <= 100 nm) and decreased with increasing particle diameter in the accumulation mode (similar to 80% at D approximate to 200 nm). The kappa values exhibited a negative linear correlation with f(org) (R(2)=0.81), and extrapolation yielded the following effective hygroscopicity parameters for organic and inorganic particle components: kappa(org)approximate to 0.1 which can be regarded as the effective hygroscopicity of biogenic secondary organic aerosol (SOA) and kappa(inorg)approximate to 0.6 which is characteristic for ammonium sulfate and related salts. Both the size dependence and the temporal variability of effective particle hygroscopicity could be parameterized as a function of AMS-based organic and inorganic mass fractions (kappa(p)=kappa(org) x f(org)+kappa(inorg) x f(inorg)). The CCN number concentrations predicted with kappa(p) were in fair agreement with the measurement results (similar to 20% average deviation). The median CCN number concentrations at S=0.1-0.82% ranged from N(CCN,0.10)approximate to 35 cm(-3) to N(CCN,0.82)approximate to 160 cm(-3), the median concentration of aerosol particles larger than 30 nm was N(CN,30)approximate to 200 cm(-3), and the corresponding integral CCN efficiencies were in the range of N(CCN,0.10/NCN,30)approximate to 0.1 to N(CCN,0.82/NCN,30)approximate to 0.8. Although the number concentrations and hygroscopicity parameters were much lower in pristine rainforest air, the integral CCN efficiencies observed were similar to those in highly polluted megacity air. Moreover, model calculations of N(CCN,S) assuming an approximate global average value of kappa approximate to 0.3 for continental aerosols led to systematic overpredictions, but the average deviations exceeded similar to 50% only at low water vapor supersaturation (0.1%) and low particle number concentrations (<= 100 cm(-3)). Model calculations assuming aconstant aerosol size distribution led to higher average deviations at all investigated levels of supersaturation: similar to 60% for the campaign average distribution and similar to 1600% for a generic remote continental size distribution. These findings confirm earlier studies suggesting that aerosol particle number and size are the major predictors for the variability of the CCN concentration in continental boundary layer air, followed by particle composition and hygroscopicity as relatively minor modulators. Depending on the required and applicable level of detail, the information and parameterizations presented in this paper should enable efficient description of the CCN properties of pristine tropical rainforest aerosols of Amazonia in detailed process models as well as in large-scale atmospheric and climate models.