861 resultados para TETRAHYDROBORATE ION
Resumo:
The recrystallization behavior of Cu films electrodeposited under oscillatory conditions in the presence of plating additives was studied by means of secondary ion mass spectrometry (SIMS) and focused ion beam analysis. When combined with bis-(sodium-sulfopropyl)-disulfide (SPS), Imep levelers (polymerizates of imidazole and epichlorohydrin) show characteristic oscillations in the galvanostatic potential/time transient measurements. These are related to the periodic degradation and restoration of the active leveler ensemble at the interface. The leveler action relies on adduct formation between the Imep and MPS (mercaptopropane sulfonic acid)-stabilized CuI complexes that appear as intermediates of the copper deposition when SPS is present in the electrolyte. SIMS depth profiling proves that additives are incorporated into the growing film preferentially under transient conditions during the structural breakdown of the leveler ensemble and its subsequent restoration. In contrast, Cu films electrodeposited in the presence of a structurally intact Imep–CuI–MPS ensemble remain largely contamination free.
Resumo:
Fission fragment mass distributions were measured in heavy-ion induced fission of 238U. The mass distributions changed drastically with incident energy. The results are explained by a change of the ratio between fusion and quasifission with nuclear orientation. A calculation based on a fluctuation dissipation model reproduced the mass distributions and their incident energy dependence. Fusion probability was determined in the analysis. Evaporation residue cross sections were calculated with a statistical model for the reactions of 30Si+238U and 34S+238U using the obtained fusion probability in the entrance channel. The results agree with the measured cross sections of 263,264Sg and 267,268Hs, produced by 30Si+238U and 34S+238U, respectively. It is also suggested that sub-barrier energies can be used for heavy element synthesis.
Resumo:
Waisrusiše Wisnšafṭ-Akademie
Resumo:
The European Rosetta mission on its way to comet 67P/Churyumov-Gerasimenko will remain for more than a year in the close vicinity (1 km) of the comet. The two ROSINA mass spectrometers on board Rosetta are designed to analyze the neutral and ionized volatile components of the cometary coma. However, the relative velocity between the comet and the spacecraft will be minimal and also the velocity of the outgassing particles is below 1km∕s. This combination leads to very low ion energies in the surrounding plasma of the comet, typically below 20eV. Additionally, the spacecraft may charge up to a few volts in this environment. In order to simulate such plasma and to calibrate the mass spectrometers, a source for ions with very low energies had to be developed for the use in the laboratory together with the different gases expected at the comet. In this paper we present the design of this ion source and we discuss the physical parameters of the ion beam like sensitivity, energy distribution, and beam shape. Finally, we show the first ion measurements that have been performed together with one of the two mass spectrometers.
Resumo:
Context. The Rosetta encounter with comet 67P/Churyumov-Gerasimenko provides a unique opportunity for an in situ, up-close investigation of ion-neutral chemistry in the coma of a weakly outgassing comet far from the Sun. Aims. Observations of primary and secondary ions and modeling are used to investigate the role of ion-neutral chemistry within the thin coma. Methods. Observations from late October through mid-December 2014 show the continuous presence of the solar wind 30 km from the comet nucleus. These and other observations indicate that there is no contact surface and the solar wind has direct access to the nucleus. On several occasions during this time period, the Rosetta/ROSINA/Double Focusing Mass Spectrometer measured the low-energy ion composition in the coma. Organic volatiles and water group ions and their breakup products (masses 14 through 19), CO2+ (masses 28 and 44) and other mass peaks (at masses 26, 27, and possibly 30) were observed. Secondary ions include H3O+ and HCO+ (masses 19 and 29). These secondary ions indicate ion-neutral chemistry in the thin coma of the comet. A relatively simple model is constructed to account for the low H3O+/H2O+ and HCO+/CO+ ratios observed in a water dominated coma. Results from this simple model are compared with results from models that include a more detailed chemical reaction network. Results. At low outgassing rates, predictions from the simple model agree with observations and with results from more complex models that include much more chemistry. At higher outgassing rates, the ion-neutral chemistry is still limited and high HCO+/CO+ ratios are predicted and observed. However, at higher outgassing rates, the model predicts high H3O+/H2O+ ratios and the observed ratios are often low. These low ratios may be the result of the highly heterogeneous nature of the coma, where CO and CO2 number densities can exceed that of water.