951 resultados para TESTOSTERONE BIOSYNTHESIS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of the fundamental questions in biology is how cooperative and altruistic behaviors evolved. The majority of studies seeking to identify the genes regulating these behaviors have been performed in systems where behavioral and physiological differences are relatively fixed, such as in the honey bee. During colony founding in the monogyne (one queen per colony) social form of the fire ant Solenopsis invicta, newly-mated queens may start new colonies either individually (haplometrosis) or in groups (pleometrosis). However, only one queen (the "winner") in pleometrotic associations survives and takes the lead of the young colony while the others (the "losers") are executed. Thus, colony founding in fire ants provides an excellent system in which to examine the genes underpinning cooperative behavior and how the social environment shapes the expression of these genes. We developed a new whole genome microarray platform for S. invicta to characterize the gene expression patterns associated with colony founding behavior. First, we compared haplometrotic queens, pleometrotic winners and pleometrotic losers. Second, we manipulated pleometrotic couples in order to switch or maintain the social ranks of the two cofoundresses. Haplometrotic and pleometrotic queens differed in the expression of genes involved in stress response, aging, immunity, reproduction and lipid biosynthesis. Smaller sets of genes were differentially expressed between winners and losers. In the second experiment, switching social rank had a much greater impact on gene expression patterns than the initial/final rank. Expression differences for several candidate genes involved in key biological processes were confirmed using qRT-PCR. Our findings indicate that, in S. invicta, social environment plays a major role in the determination of the patterns of gene expression, while the queen's physiological state is secondary. These results highlight the powerful influence of social environment on regulation of the genomic state, physiology and ultimately, social behavior of animals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

NKT cells, defined as T cells expressing the NK cell marker NK1.1, are involved in tumor rejection and regulation of autoimmunity via the production of cytokines. We show in this study that two types of NKT cells can be defined on the basis of their reactivity to the monomorphic MHC class I-like molecule CD1d. One type of NKT cell is positively selected by CD1d and expresses a biased TCR repertoire together with a phenotype found on activated T cells. A second type of NKT cell, in contrast, develops in the absence of CD1d, and expresses a diverse TCR repertoire and a phenotype found on naive T cells and NK cells. Importantly, the two types of NKT cells segregate in distinct tissues. Whereas thymus and liver contain primarily CD1d-dependent NKT cells, spleen and bone marrow are enriched in CD1d-independent NKT cells. Collectively, our data suggest that recognition of tissue-specific ligands by the TCR controls localization and activation of NKT cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Most NK1.1+ T (NKT) cells express a biased TCRalphabeta repertoire that is positively selected by the monomorphic MHC class I-like molecule CD1d. The development of CD1d-dependent NKT cells is thymus dependent but, in contrast to conventional T cells, requires positive selection by cells of hemopoietic origin. Here, we show that the Src protein tyrosine kinase Fyn is required for development of CD1d-dependent NKT cells but not for the development of conventional T cells. In contrast, another Src kinase, Lck, is required for the development of both NKT and T cells. Impaired NKT cell development in Fyn-deficient mice cannot be rescued by transgenic expression of CD8, which is believed to increase the avidity of CD1d recognition by NKT cells. Taken together, our data reveal a selective and nonredundant role for Fyn in NKT cell development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Résumé Streptococcus gordonii est une bactérie colonisatrice naturelle de la cavité buccale de l'homme. Bien que normalement commensale, elle peut causer des infections graves, telles que des bactériémies ou des endocardites infectieuses. La pénicilline étant un des traitements privilégiés dans de tels cas, l'augmentation rapide et globale des résistances à cet antibiotique devient inquiétante. L'étude de la physiologie et des bases génétiques de ces résistances chez S. gordonii s'avère donc importante. Les cibles moléculaires privilégiées de la pénicilline G et des β-lactames sont les penicilllin-binding proteins (PBPs). Ces enzymes associées à la membrane ont pour rôle de catalyser les réactions de transpeptidation et de transglycosylation, qui constituent les dernières étapes de la biosynthèse du peptidoglycan (PG). Elles sont définies comme classe A ou B selon leur capacité d'assurer soit les deux réactions, soit uniquement la transpeptidation. Les β-lactames inhibent le domaine transpeptidase de toutes les PBPs, entraînant l'inhibition de la synthèse du PG, l'inhibition de la croissance, et finalement la mort cellulaire. Chez les streptocoques, les PBPs sont aussi les premiers déterminants de la résistance à la pénicilline. De plus, elles sont impliquées dans la morphologie bactérienne, en raison de leur rôle crucial dans la formation du PG. Le but de ce travail était de caractériser les PBPs de S. gordonii et d'étudier leurs fonctions dans la vie végétative de la bactérie ainsi que durant le développement de la résistance à la pénicilline. Premièrement, des mutants auxquels il manque une ou deux PBP(s) ont été construits. Leur étude - au niveau physiologique, biochimique et morphologique - a montré le caractère essentiel ou dispensable de chaque protéine, ainsi que certaines de leurs fonctions potentielles. Deuxièmement, des mutants résistants à la pénicilline ont été générés. Leur caractérisation a montré l'importance des mutations dans les PBPs ainsi que dans d'autres gènes encore inconnus, de même que le rôle crucial des PBPs de classe A dans le développement de la résistance à la pénicilline. Des expériences supplémentaires sur des isolats résistants ont aussi prouvé que la résistance a un coût en terme de fitness, coût que S. gordonii parvient à compenser par des mécanismes d'adaptation. Finalement, les promoteurs des gènes des PBPs ont été déterminés et leur expression a été étudiée grâce au gène de luciférase. Il a ainsi été montré que la résistance à la pénicilline entraîne non seulement des altérations au niveau des protéines, mais aussi au niveau de la régulation des gènes. De plus, la pénicilline génère directement des modifications dans l'expression de PBPs spécifiques. Summary Streptococcus gordonii is a normal inhabitant of the human oral cavity and a pioneer colonizer of teeth. Although usually considered as a commensal, this organism can cause life-threatening infections such as bacteraemia or endocarditis. Since penicillin is one of the preferential treatments for such pathologies, the rapid and general increase of antibiotic resistance in the overall population becomes an issue. Thus, studying the physiologic and genetic bases of such a resistance in S. gordonii is of interest. The primary molecular targets of penicillin G and other β-lactams are the so called penicillin-binding proteins (PBPs). These are membrane-associated proteins that catalyze the last steps in peptidoglycan (PG) biosynthesis, namely transpeptidation and transglycosylation. Depending on their capacity to catalyze either reactions or only transpeptidation, they are considered as class A or class B PBPs, respectively. β-lactam antibiotics inhibit the transpeptidase domain of both of these classes of enzymes, resulting in inhibition of PG assembly, inhibition of bacterial growth, and ultimately leading to cell death. In streptococci, PBPs are also the primary determinants of penicillin-resistance. Moreover, because of their crucial role in PG formation, they are implicated in fundamental aspects of cell morphology. The goal of this work was thus to characterize S. gordonii PBPs and to explore their functions in terms of vegetative life and penicillin-resistance development. First, single and double PBP-inactivated mutants were generated and their effect on the bacterial physiology, cell wall biochemistry and ultrastructural morphology was assessed. This demonstrated the essentiality or dispensability of each protein for bacterial life. Second, penicillin-resistant mutants were generated by cyclic exposure to increasing concentrations of the drug. Characterization of these mutants pointed out the importance of both PBP and non-PBP mutations, as well as the crucial role of the class A PBPs in the development of penicillin-resistance. Further experiments on resistant isolates demonstrated the fitness cost of this resistance, but also the capacity of S. gordonii to adapt and regain the fitness of the wild-type. Finally, the promoters of PBP genes were determined and their expression was monitored using luciferase fusions. This showed that penicillin-resistance, in addition to modifications at the level of the protein, also triggered genetic alterations. Moreover, penicillin itself generated modifications in the expression of specific PBPs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microtubule-associated protein 2 (MAP2), a protein linked to the neuronal cytoskeleton in the mature central nervous system (CNS), has recently been identified in glial precursors indicating a potential role during glial development. In the present study, we systematically analyzed the expression of MAP2 in a series of 237 human neuroepithelial tumors including paraffin-embedded specimens and tumor tissue microarrays from oligodendrogliomas, mixed gliomas, astrocytomas, glioblastomas, ependymomas, as well as dysembryoplastic neuroepithelial tumors (DNT), and central neurocytomas. In addition, MAP2-immunoreactive precursor cells were studied in the developing human brain. Three monoclonal antibodies generated against MAP2A-B or MAP2A-D isoforms were used. Variable immunoreactivity for MAP2 could be observed in all gliomas with the exception of ependymomas. Oligodendrogliomas exhibited a consistently strong and distinct pattern of expression characterized by perinuclear cytoplasmic staining without significant process labeling. Tumor cells with immunoreactive bi- or multi-polar processes were mostly encountered in astroglial neoplasms, whereas the small cell component in neurocytomas and DNT was not labeled. These features render MAP2 immunoreactivity a helpful diagnostic tool for the distinction of oligodendrogliomas and other neuroepithelial neoplasms. RT-PCR, Western blot analysis, and in situ hybridization confirmed the expression of MAP2A-C (including the novel MAP2+ 13 transcript) in both oligodendrogliomas and astrocytomas. Double fluorescent laser scanning microscopy showed that GFAP and MAP2 labeled different tumor cell populations. In embryonic human brains, MAP2-immunoreactive glial precursor cells were identified within the subventricular or intermediate zones. These precursors exhibit morphology closely resembling the immunolabeled neoplastic cells observed in glial tumors. Our findings demonstrate MAP2 expression in astrocytic and oligodendroglial neoplasms. The distinct pattern of immunoreactivity in oligodendrogliomas may be useful as a diagnostic tool. Since MAP2 expression occurs transiently in migrating immature glial cells, our findings are in line with an assumed origin of diffuse gliomas from glial precursors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pseudomonas entomophila is an entomopathogenic bacterium that is able to infect and kill Drosophila melanogaster upon ingestion. Its genome sequence suggests that it is a versatile soil bacterium closely related to Pseudomonas putida. The GacS/GacA two-component system plays a key role in P. entomophila pathogenicity, controlling many putative virulence factors and AprA, a secreted protease important to escape the fly immune response. P. entomophila secretes a strong diffusible hemolytic activity. Here, we showed that this activity is linked to the production of a new cyclic lipopeptide containing 14 amino acids and a 3-C(10)OH fatty acid that we called entolysin. Three nonribosomal peptide synthetases (EtlA, EtlB, EtlC) were identified as responsible for entolysin biosynthesis. Two additional components (EtlR, MacAB) are necessary for its production and secretion. The P. entomophila GacS/GacA two-component system regulates entolysin production, and we demonstrated that its functioning requires two small RNAs and two RsmA-like proteins. Finally, entolysin is required for swarming motility, as described for other lipopeptides, but it does not participate in the virulence of P. entomophila for Drosophila. While investigating the physiological role of entolysin, we also uncovered new phenotypes associated with P. entomophila, including strong biocontrol abilities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Athlete Biological Passport (ABP) is an individual electronic document that collects data regarding a specific athlete that is useful in differentiating between natural physiologic variations of selected biomarkers and deviations caused by artificial manipulations. A subsidiary of the endocrine module of the ABP, that which here is called Athlete Steroidal Passport (ASP), collects data on markers of an altered metabolism of endogenous steroidal hormones measured in urine samples. The ASP aims to identify not only doping with anabolic-androgenic steroids, but also most indirect steroid doping strategies such as doping with estrogen receptor antagonists and aromatase inhibitors. Development of specific markers of steroid doping, use of the athlete's previous measurements to define individual limits, with the athlete becoming his or her own reference, the inclusion of heterogeneous factors such as the UDPglucuronosyltransferase B17 genotype of the athlete, the knowledge of potentially confounding effects such as heavy alcohol consumption, the development of an external quality control system to control analytical uncertainty, and finally the use of Bayesian inferential methods to evaluate the value of indirect evidence have made the ASP a valuable alternative to deter steroid doping in elite sports. The ASP can be used to target athletes for gas chromatography/combustion/ isotope ratio mass spectrometry (GC/C/IRMS) testing, to withdraw temporarily the athlete from competing when an abnormality has been detected, and ultimately to lead to an antidoping infraction if that abnormality cannot be explained by a medical condition. Although the ASP has been developed primarily to ensure fairness in elite sports, its application in endocrinology for clinical purposes is straightforward in an evidence-based medicine paradigm.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The future of antimalarial chemotherapy is particulary alarming in view of the spread of parasite cross-resistances to drugs that are not even structurally related. Only the availability of new pharmacological models will make it possible to select molecules with novel mechanisms of action, thus delaving resistance and allowing the development of new chemotherapeutic strategies. We reached this objective in mice. Our approach is hunged on fundamental and applied research begun in 1980 to investigate to phospholipid (PL) metabolism of intraerythrocytic Plasmodium. This metabolism is abundant, specific and indispensable for the production of Plasmodium membranes. Any drug to interfere with this metabolism blocks parasitic development. The most effective interference yet found involves blockage of the choline transporter, which supplies Plasmodium with choline for the synthesis of phosphatidylcholine, its major PL, this is a limiting step in the pathway. The drug sensitivity thereshold is much lower for the parasite, which is more dependent on this metabolism than host cells. The compounds show in vitro activity against P. falciparum at 1 to 10 nM. They show a very low toxicity against a lymphblastoid cell line, demonstrating a total abscence of correlation between growth inhibition of parasites and lymphoblastoid cells. They show antimalarial activity in vivo, in the P. berghei or P. chabaudi/mouse system, at doses 20-to 100-fold lower than their in acute toxicity limit. The bioavailability of a radiolabeled form of the product seemed to be advantageous (slow blood clearance and no significant concentration in tissues). Lastly, the compounds are inexpensive to produce. They are stable and water-soluble.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A procedure was devised for the identification and specific cloning of functionally rearranged variable region immunoglobulin (Ig) gene segments from genomic DNA of a murine hybridoma cell line which produces a high-affinity monoclonal antibody (MAb) directed against human carcinoembryonic antigen (CEA). The cloned, functionally-rearranged murine Ig H-chain and L-chain variable region gene segments were incorporated into plasmid vectors capable of directing the expression of a chimaeric mouse-human antibody molecule with human (gamma 4, kappa) constant region sequences. Expression plasmids were transfected into a mouse myeloma cell line by electroporation and transfectomas secreting functional chimaeric antibody selected. Chimaeric antibody generated by transfectomas was analysed and shown to compete effectively with its murine counterpart for binding to the CEA epitope, and to have an equivalent antigen-binding affinity. This anti-CEA recombinant antibody should find application in in vivo diagnosis by immunoscintigraphy of human colonic carcinoma, and possibly also in therapy of the disease, overcoming some of the difficulties associated with the repeated use of non-human immunoglobulins in human patients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mammalian ortholog of the conserved Drosophila adaptor protein Numb (Nb) and its homolog Numblike (Nbl) modulate neuronal cell fate determination at least in part by antagonizing Notch signaling. Because the Notch pathway has been implicated in regulating hemopoietic stem cell self-renewal and T cell fate specification in mammals, we investigated the role of Nb and Nbl in hemopoiesis using conditional gene targeting. Surprisingly simultaneous deletion of both Nb and Nbl in murine bone marrow precursors did not affect the ability of stem cells to self-renew or to give rise to differentiated myeloid or lymphoid progeny, even under competitive conditions in mixed chimeras. Furthermore, T cell fate specification and intrathymic T cell development were unaffected in the combined absence of Nb and Nbl. Collectively our data indicate that the Nb family of adaptor proteins is dispensable for hemopoiesis and lymphopoiesis in mice, despite their proposed role in neuronal stem cell development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The class II transactivator (CIITA) has been referred to as the "master control factor" for the expression of MHC class II (MHCII) genes. As our knowledge on the specificity and function of CIITA grows, it is becoming increasingly evident that this sobriquet is entirely justified. First, despite extensive investigations, the major target genes of CIITA remain those implicated in the presentation of antigenic peptides by MHCII molecules. Although other putative target genes have been reported, the contribution of CIITA to their expression remains indirect, controversial or comparatively minor relative to its decisive role as a regulator of MHCII and related genes. Second, the most important parameter dictating MHCII expression is by far the expression pattern of the gene encoding CIITA (MHC2TA). The vast majority of signals that activate or repress MHCII expression under physiological and pathological situations converge on one or more of the three alternative promoters that drive transcription of the MHC2TA gene. In short, with respect to its specificity and its exquisitely controlled pattern of expression, CIITA is by a long stretch the single most important transcription factor for the regulation of genes required for MHCII-restricted antigen-presentation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PIDD has been implicated in survival and apoptotic pathways in response to DNA damage, and a role for PIDD was recently identified in non-homologous end-joining (NHEJ) repair induced by γ-irradiation. Here, we present an interaction of PIDD with PCNA, first identified in a proteomics screen. PCNA has essential functions in DNA replication and repair following UV irradiation. Translesion synthesis (TLS) is a process that prevents UV irradiation-induced replication blockage and is characterized by PCNA monoubiquitination and interaction with the TLS polymerase eta (polη). Both of these processes are inhibited by p21. We report that PIDD modulates p21-PCNA dissociation, and promotes PCNA monoubiquitination and interaction with polη in response to UV irradiation. Furthermore, PIDD deficiency leads to a defect in TLS that is associated, both in vitro and in vivo, with cellular sensitization to UV-induced apoptosis. Thus, PIDD performs key functions upon UV irradiation, including TLS, NHEJ, NF-κB activation and cell death.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pseudomonas fluorescens CHA0 produces a variety of secondary metabolites, in particular the antibiotics pyoluteorin and 2,4-diacetylphloroglucinol, and protects various plants from diseases caused by soilborne pathogenic fungi. The rpoD gene encoding the housekeeping sigma factor sigma 70 of P. fluorescens was sequenced. The deduced RpoD protein showed 83% identity with RpoD of Pseudomonas aeruginosa and 67% identity with RpoD of Escherichia coli. Attempts to inactivate the single chromosomal rpoD gene of strain CHA0 were unsuccessful, indicating an essential role of this gene. When rpoD was carried by an IncP vector in strain CHA0, the production of both antibiotics was increased severalfold and, in parallel, protection of cucumber against disease caused by Pythium ultimum was improved, in comparison with strain CHA0.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many organisms use fatty acid derivatives as biological regulators. In plants, for example, fatty acid-derived signals have established roles in the regulation of developmental and defense gene expression. Growing numbers of these compounds, mostly derived from fatty acid hydroperoxides, are being characterized. The model plant Arabidopsis thaliana is serving a vital role in the discovery of fatty acid-derived signal molecules and the genetic analysis of their synthesis and action. The Arabidopsis genome sequencing project, the availability of large numbers of mutants in fatty acid biosynthesis and signal transduction, as well as excellent pathosystems, make this plant a tremendously useful model for research in fatty acid signaling. This review summarizes recent progress in understanding fatty acid signaling in A. thaliana and highlights areas of research where progress is rapid. Particular attention is paid to the growing literature on the jasmonate family of regulators and their role in defense against insects and microbial pathogens.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To further validate the doubly labeled water method for measurement of CO2 production and energy expenditure in humans, we compared it with near-continuous respiratory gas exchange in nine healthy young adult males. Subjects were housed in a respiratory chamber for 4 days. Each received 2H2(18)O at either a low (n = 6) or a moderate (n = 3) isotope dose. Low and moderate doses produced initial 2H enrichments of 5 and 10 X 10(-3) atom percent excess, respectively, and initial 18O enrichments of 2 and 2.5 X 10(-2) atom percent excess, respectively. Total body water was calculated from isotope dilution in saliva collected at 4 and 5 h after the dose. CO2 production was calculated by the two-point method using the isotopic enrichments of urines collected just before each subject entered and left the chamber. Isotope enrichments relative to predose samples were measured by isotope ratio mass spectrometry. At low isotope dose, doubly labeled water overestimated average daily energy expenditure by 8 +/- 9% (SD) (range -7 to 22%). At moderate dose the difference was reduced to +4 +/- 5% (range 0-9%). The isotope elimination curves for 2H and 18O from serial urines collected from one of the subjects showed expected diurnal variations but were otherwise quite smooth. The overestimate may be due to approximations in the corrections for isotope fractionation and isotope dilution. An alternative approach to the corrections is presented that reduces the overestimate to 1%.