904 resultados para Sympathetic magic


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this study was to use linear and non-linear methods to investigate cardiac autonomic modulation in healthy elderly men and women in response to a postural change from the supine to the standing position. Fourteen men (66.1 ± 3.5 years) and 10 women (65.3 ± 3.3 years) were evaluated. Beat-to-beat heart rate was recorded in the supine and standing positions. Heart rate variability was studied by spectral analysis, including both low (LFnu-cardiac sympathetic modulation (CSM) indicator) and high (HFnu-cardiac vagal modulation (CVM) indicator) frequencies in normalized units as well as the low frequency/high frequency (LF/HF) ratio. Symbolic analysis was performed using the following indexes: 0V% (CSM indicator), 1V% (CSM and CVM indicators), 2LV% (predominantly CVM indicator) and 2ULV% (CVM indicator). Shannon entropy was also calculated. Men presented higher LFnu and LF/HF ratio and lower HFnu and 1V% symbolic index (57.56, 4.14, 40.53, 45.96, respectively) than women (24.60, 0.45, 72.47, 52.69, respectively) in the supine position. Shannon entropy was higher among men (3.53) than among women (3.33) in the standing position, and also increased according to postural change in men (3.25; 3.53). During postural change, the LFnu (24.60; 49.85) and LF/HF ratio (0.45; 1.72) increased, with a concomitant decrease in HFnu (72.47; 47.56) and 2LV% (14.10; 6.95) in women. Women presented increased CSM in response to postural change and had higher CVM and lower CSM than men in the supine position. In conclusion, women in the age range studied presented a more appropriate response to a postural change than men, suggesting that cardiac autonomic modulation may be better preserved in women than in men.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Activation of 5-hydroxytryptamine (5-HT) 5-HT1A, 5-HT2C, 5-HT3, and 5-HT7 receptors modulates the excitability of cardiac vagal motoneurones, but the precise role of 5-HT2A/2B receptors in these phenomena is unclear. We report here the effects of intracisternal (ic) administration of selective 5-HT2A/2B antagonists on the vagal bradycardia elicited by activation of the von Bezold-Jarisch reflex with phenylbiguanide. The experiments were performed on urethane-anesthetized male Wistar rats (250-270 g, N = 7-9 per group). The animals were placed in a stereotaxic frame and their atlanto-occipital membrane was exposed to allow ic injections. The rats received atenolol (1 mg/kg, iv) to block the sympathetic component of the reflex bradycardia; 20-min later, the cardiopulmonary reflex was induced with phenylbiguanide (15 µg/kg, iv) injected at 15-min intervals until 3 similar bradycardias were obtained. Ten minutes after the last pre-drug bradycardia, R-96544 (a 5-HT2A antagonist; 0.1 µmol/kg), SB-204741 (a 5-HT2B antagonist; 0.1 µmol/kg) or vehicle was injected ic. The subsequent iv injections of phenylbiguanide were administered 5, 20, 35, and 50 min after the ic injection. The selective 5-HT2A receptor antagonism attenuated the vagal bradycardia and hypotension, with maximal effect at 35 min after the antagonist (pre-drug = -200 ± 11 bpm and -42 ± 3 mmHg; at 35 min = -84 ± 10 bpm and -33 ± 2 mmHg; P < 0.05). Neither the 5-HT2B receptor antagonists nor the vehicle changed the reflex. These data suggest that central 5-HT2A receptors modulate the central pathways of the parasympathetic component of the von Bezold-Jarisch reflex.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is accumulating evidence that physical inactivity, associated with the modern sedentary lifestyle, is a major determinant of hypertension. It represents the most important modifiable risk factor for cardiovascular diseases, which are the leading cause of morbidity and mortality for both men and women. In addition to involving sympathetic overactivity that alters hemodynamic parameters, hypertension is accompanied by several abnormalities in the skeletal muscle circulation including vessel rarefaction and increased arteriole wall-to-lumen ratio, which contribute to increased total peripheral resistance. Low-intensity aerobic training is a promising tool for the prevention, treatment and control of high blood pressure, but its efficacy may differ between men and women and between male and female animals. This review focuses on peripheral training-induced adaptations that contribute to a blood pressure-lowering effect, with special attention to differential responses in male and female spontaneously hypertensive rats (SHR). Heart, diaphragm and skeletal muscle arterioles (but not kidney arterioles) undergo eutrophic outward remodeling in trained male SHR, which contributed to a reduction of peripheral resistance and to a pressure fall. In contrast, trained female SHR showed no change in arteriole wall-to-lumen ratio and no pressure fall. On the other hand, training-induced adaptive changes in capillaries and venules (increased density) were similar in male and female SHR, supporting a similar hyperemic response to exercise.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The autonomic nervous system plays a key role in maintaining homeostasis under normal and pathological conditions. The sympathetic tone, particularly for the cardiovascular system, is generated by sympathetic discharges originating in specific areas of the brainstem. Aerobic exercise training promotes several cardiovascular adjustments that are influenced by the central areas involved in the output of the autonomic nervous system. In this review, we emphasize the studies that investigate aerobic exercise training protocols to identify the cardiovascular adaptations that may be the result of central nervous system plasticity due to chronic exercise. The focus of our study is on some groups of neurons involved in sympathetic regulation. They include the nucleus tractus solitarii, caudal ventrolateral medulla and the rostral ventrolateral medulla that maintain and regulate the cardiac and vascular autonomic tonus. We also discuss studies that demonstrate the involvement of supramedullary areas in exercise training modulation, with emphasis on the paraventricular nucleus of the hypothalamus, an important area of integration for autonomic and neuroendocrine responses. The results of these studies suggest that the beneficial effects of physical activity may be due, at least in part, to reductions in sympathetic nervous system activity. Conversely, with the recent association of physical inactivity with chronic disease, these data may also suggest that increases in sympathetic nervous system activity contribute to the increased incidence of cardiovascular diseases associated with a sedentary lifestyle.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neurogenic hypertension has been the subject of extensive research worldwide. This review is based on the premise that some forms of neurogenic hypertension are caused in part by the formation of angiotensin-II (Ang-II)-induced reactive oxygen species along the subfornical organ-paraventricular nucleus of the hypothalamus-rostral ventrolateral medulla pathway (SFO-PVN-RVLM pathway). We will discuss the recent contribution of our laboratory and others regarding the mechanisms by which neurons in the SFO (an important circumventricular organ) are activated by Ang-II, how the SFO communicates with two other important areas involved in sympathetic activity regulation (PVN and RVLM) and how Ang-II-induced reactive oxygen species participate along the SFO-PVN-RVLM pathway in the pathogenesis of neurogenic hypertension.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The arterial partial pressure (P CO2) of carbon dioxide is virtually constant because of the close match between the metabolic production of this gas and its excretion via breathing. Blood gas homeostasis does not rely solely on changes in lung ventilation, but also to a considerable extent on circulatory adjustments that regulate the transport of CO2 from its sites of production to the lungs. The neural mechanisms that coordinate circulatory and ventilatory changes to achieve blood gas homeostasis are the subject of this review. Emphasis will be placed on the control of sympathetic outflow by central chemoreceptors. High levels of CO2 exert an excitatory effect on sympathetic outflow that is mediated by specialized chemoreceptors such as the neurons located in the retrotrapezoid region. In addition, high CO2 causes an aversive awareness in conscious animals, activating wake-promoting pathways such as the noradrenergic neurons. These neuronal groups, which may also be directly activated by brain acidification, have projections that contribute to the CO2-induced rise in breathing and sympathetic outflow. However, since the level of activity of the retrotrapezoid nucleus is regulated by converging inputs from wake-promoting systems, behavior-specific inputs from higher centers and by chemical drive, the main focus of the present manuscript is to review the contribution of central chemoreceptors to the control of autonomic and respiratory mechanisms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The endothelium plays a vital role in maintaining circulatory homeostasis by the release of relaxing and contracting factors. Any change in this balance may result in a process known as endothelial dysfunction that leads to impaired control of vascular tone and contributes to the pathogenesis of some cardiovascular and endocrine/metabolic diseases. Reduced endothelium-derived nitric oxide (NO) bioavailability and increased production of thromboxane A2, prostaglandin H2 and superoxide anion in conductance and resistance arteries are commonly associated with endothelial dysfunction in hypertensive, diabetic and obese animals, resulting in reduced endothelium-dependent vasodilatation and in increased vasoconstrictor responses. In addition, recent studies have demonstrated the role of enhanced overactivation ofβ-adrenergic receptors inducing vascular cytokine production and endothelial NO synthase (eNOS) uncoupling that seem to be the mechanisms underlying endothelial dysfunction in hypertension, heart failure and in endocrine-metabolic disorders. However, some adaptive mechanisms can occur in the initial stages of hypertension, such as increased NO production by eNOS. The present review focuses on the role of NO bioavailability, eNOS uncoupling, cyclooxygenase-derived products and pro-inflammatory factors on the endothelial dysfunction that occurs in hypertension, sympathetic hyperactivity, diabetes mellitus, and obesity. These are cardiovascular and endocrine-metabolic diseases of high incidence and mortality around the world, especially in developing countries and endothelial dysfunction contributes to triggering, maintenance and worsening of these pathological situations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ouabain, an endogenous digitalis compound, has been detected in nanomolar concentrations in the plasma of several mammals and is associated with the development of hypertension. In addition, plasma ouabain is increased in several hypertension models, and the acute or chronic administration of ouabain increases blood pressure in rodents. These results suggest a possible association between ouabain and the genesis or development and maintenance of arterial hypertension. One explanation for this association is that ouabain binds to the α-subunit of the Na+ pump, inhibiting its activity. Inhibition of this pump increases intracellular Na+, which reduces the activity of the sarcolemmal Na+/Ca2+ exchanger and thereby reduces Ca2+ extrusion. Consequently, intracellular Ca2+ increases and is taken up by the sarcoplasmic reticulum, which, upon activation, releases more calcium and increases the vascular smooth muscle tone. In fact, acute treatment with ouabain enhances the vascular reactivity to vasopressor agents, increases the release of norepinephrine from the perivascular adrenergic nerve endings and promotes increases in the activity of endothelial angiotensin-converting enzyme and the local synthesis of angiotensin II in the tail vascular bed. Additionally, the hypertension induced by ouabain has been associated with central mechanisms that increase sympathetic tone, subsequent to the activation of the cerebral renin-angiotensin system. Thus, the association with peripheral mechanisms and central mechanisms, mainly involving the renin-angiotensin system, may contribute to the acute effects of ouabain-induced elevation of arterial blood pressure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this study was to investigate the behavior of heart rate (HR) and HR variability (HRV) during different loads of resistance exercise (incline bench press) in patients with coronary artery disease (CAD) and healthy sedentary controls. Ten healthy men (65 ± 1.2 years, control group, CG) and 10 men with clinically stable CAD (66 ± 2.4 years, CADG) were recruited. A discontinuous progressive protocol was applied with an initial load of 10% of the maximum load achieved in the 1RM (1 repetition maximum) with increases of 10% until 30% 1RM was reached, which was followed by subsequent increases of 5% 1RM until exhaustion. HRV was analyzed by linear and non-linear methods. There was a significant reduction in rMSSD (CG: 20 ± 2 to 11 ± 3 ms; CADG: 19 ± 3 to 9 ± 1 ms) and SD1 indexes (CG: 14 ± 2 to 8 ± 1 ms; CADG: 14 ± 2 to 7 ± 1 ms). An increase in HR (CG: 69 ± 5 to 90 ± 5 bpm; CADG: 62 ± 4 to 75 ± 4 bpm) and in systolic blood pressure (CG: 124 ± 3 to 138 ± 3 mmHg; CADG: 122 ± 6 to 126 ± 9 bpm) were observed (P < 0.05) when comparing pre-effort rest and 40% 1RM in both groups. Furthermore, an increase in RMSM index was also observed (CG: 28 ± 3 to 45 ± 9 ms; CADG: 22 ± 2 to 79 ± 33 ms), with higher values in CADG. We conclude that loads up to 30% 1RM during incline bench press result in depressed vagal modulation in both groups, although only stable CAD patients presented sympathetic overactivity at 20% 1RM upper limb exercise.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study was to determine the correlation between total nitrite/nitrate concentrations (NOx) and the kinetic parameters of monoamine oxidase enzymes (MAO-A and MAO-B) and semicarbazide-sensitive amine oxidase (SSAO) in human mesenteric arteries. Arteries were from non-diabetic and type 2 diabetic patients with sigmoid or rectum carcinoma for whom surgery was the first option and who were not exposed to neo-adjuvant therapy. Segments of human inferior mesenteric arteries from non-diabetic (61.1 ± 8.9 years old, 7 males and 5 females, N = 12) and type 2 diabetic patients (65.8 ± 6.2 years old, 8 males and 4 females, N = 12) were used to determine NOx concentrations and the kinetic parameters of MAO-A, MAO-B and SSAO by the Griess reaction and by radiochemical assay, respectively. The NOx concentrations in arteries from diabetic patients did not differ significantly from those of the non-diabetic group (10.28 ± 4.61 vs 10.71 ± 4.32 nmol/mg protein, respectively). In the non-diabetic group, there was a positive correlation between NOx concentrations and MAO-B parameters: Km (r = 0.612, P = 0.034) and Vmax (r = 0.593, P = 0.042), and a negative correlation with the SSAO parameters: Km (r = -0.625, P = 0.029) and Vmax (r = -0.754, P = 0.005). However, in the diabetic group no correlation was found between NOx concentrations and the three kinetic parameters of the enzymes. These results suggest an important function of sympathetic nerves and vascular NOx concentrations in arteries of non-diabetic patients. Thus, these results confirm the importance of a balance between oxidants and antioxidants in the maintenance of vascular homeostasis to prevent oxidative stress.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Obesity is strongly associated with high blood pressure, dyslipidemia, and type 2 diabetes. These conditions synergistically increase the risk of cardiovascular events. A number of central and peripheral abnormalities can explain the development or maintenance of high blood pressure in obesity. Of great interest is endothelial dysfunction, considered to be a primary risk factor in the development of hypertension. Additional mechanisms also related to endothelial dysfunction have been proposed to mediate the development of hypertension in obese individuals. These include: increase in both peripheral vasoconstriction and renal tubular sodium reabsorption, increased sympathetic activity and overactivation of both the renin-angiotensin system and the endocannabinoid system and insulin resistance. The discovery of new mechanisms regulating metabolic and vascular function and a better understanding of how vascular function can be influenced by these systems would facilitate the development of new therapies for treatment of obesity-associated hypertension.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objectives of this study were to evaluate and compare the use of linear and nonlinear methods for analysis of heart rate variability (HRV) in healthy subjects and in patients after acute myocardial infarction (AMI). Heart rate (HR) was recorded for 15 min in the supine position in 10 patients with AMI taking β-blockers (aged 57 ± 9 years) and in 11 healthy subjects (aged 53 ± 4 years). HRV was analyzed in the time domain (RMSSD and RMSM), the frequency domain using low- and high-frequency bands in normalized units (nu; LFnu and HFnu) and the LF/HF ratio and approximate entropy (ApEn) were determined. There was a correlation (P < 0.05) of RMSSD, RMSM, LFnu, HFnu, and the LF/HF ratio index with the ApEn of the AMI group on the 2nd (r = 0.87, 0.65, 0.72, 0.72, and 0.64) and 7th day (r = 0.88, 0.70, 0.69, 0.69, and 0.87) and of the healthy group (r = 0.63, 0.71, 0.63, 0.63, and 0.74), respectively. The median HRV indexes of the AMI group on the 2nd and 7th day differed from the healthy group (P < 0.05): RMSSD = 10.37, 19.95, 24.81; RMSM = 23.47, 31.96, 43.79; LFnu = 0.79, 0.79, 0.62; HFnu = 0.20, 0.20, 0.37; LF/HF ratio = 3.87, 3.94, 1.65; ApEn = 1.01, 1.24, 1.31, respectively. There was agreement between the methods, suggesting that these have the same power to evaluate autonomic modulation of HR in both AMI patients and healthy subjects. AMI contributed to a reduction in cardiac signal irregularity, higher sympathetic modulation and lower vagal modulation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study tested the hypothesis that simvastatin treatment can improve cardiovascular and autonomic functions and membrane lipoperoxidation, with an increased effect when applied to physically trained ovariectomized rats. Ovariectomized rats were divided into sedentary, sedentary+simvastatin and trained+simvastatin groups (n = 8 each). Exercise training was performed on a treadmill for 8 weeks and simvastatin (5 mg/kg) was administered in the last 2 weeks. Blood pressure (BP) was recorded in conscious animals. Baroreflex sensitivity was evaluated by the tachycardic and bradycardic responses to BP changes. Cardiac vagal and sympathetic effects were determined using methylatropine and propranolol. Oxidative stress was evaluated based on heart and liver lipoperoxidation using the chemiluminescence method. The simvastatin-treated groups presented reduced body weight and mean BP (trained+simvastatin = 99 ± 2 and sedentary+simvastatin = 107 ± 2 mmHg) compared to the sedentary group (122 ± 1 mmHg). Furthermore, the trained group showed lower BP and heart rate compared to the other groups. Tachycardic and bradycardic responses were enhanced in both simvastatin-treated groups. The vagal effect was increased in the trained+simvastatin group and the sympathetic effect was decreased in the sedentary+simvastatin group. Hepatic lipoperoxidation was reduced in sedentary+simvastatin (≈21%) and trained+simvastatin groups (≈57%) compared to the sedentary group. Correlation analysis involving all animals demonstrated that cardiac lipoperoxidation was negatively related to the vagal effect (r = -0.7) and positively correlated to the sympathetic effect (r = 0.7). In conclusion, improvement in cardiovascular and autonomic functions associated with a reduction of lipoperoxidation with simvastatin treatment was increased in trained ovariectomized rats.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dipyrone (Dp), 4-aminoantipyrine (AA), and antipyrine (At) delay liquid gastric emptying (GE) in rats. We evaluated adrenergic participation in this phenomenon in a study in male Wistar rats (250-300 g) pretreated subcutaneously with guanethidine (GUA), 100 mg·kg−1·day−1, or vehicle (V) for 2 days before experimental treatments. Other groups of animals were pretreated intravenously (iv) 15 min before treatment with V, prazosin (PRA; 1 mg/kg), yohimbine (YOH; 3 mg/kg), or propranolol (PRO; 4 mg/kg), or with intracerebroventricular (icv) administration of 25 µg PRO or V. The groups were treated iv with saline or with 240 µmol/kg Dp, AA, or At. GE was determined 10 min later by measuring the percentage of gastric retention (%GR) of saline labeled with phenol red 10 min after gavage. %GR (mean±SE, n=8) indicated that GUA abolished the effect of Dp (GUA vs V=31.7±1.6 vs47.1±2.3%) and of At (33.2±2.3 vs 54.7±3.6%) on GE and significantly reduced the effect of AA (48.1±3.2 vs67.2±3.1%). PRA and YOH did not modify the effect of the drugs. %GR (mean±SE, n=8) indicated that iv, but noticv, PRO abolished the effect of Dp (PROvs V=29.1±1.7 vs 46.9±2.7%) and At (30.5±1.7 vs 49±3.2%) and significantly reduced the effect of AA (48.4±2.6 vs 59.5±3.1%). These data suggest activation of peripheral β-adrenoceptors in the delayed GE induced by phenylpyrazolone derivatives.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The rat posterodorsal medial amygdala (MePD) links emotionally charged sensory stimuli to social behavior, and is part of the supramedullary control of the cardiovascular system. We studied the effects of microinjections of neuroactive peptides markedly found in the MePD, namely oxytocin (OT, 10 ng and 25 pg; n=6/group), somatostatin (SST, 1 and 0.05 μM; n=8 and 5, respectively), and angiotensin II (Ang II, 50 pmol and 50 fmol; n=7/group), on basal cardiovascular activity and on baroreflex- and chemoreflex-mediated responses in awake adult male rats. Power spectral and symbolic analyses were applied to pulse interval and systolic arterial pressure series to identify centrally mediated sympathetic/parasympathetic components in the heart rate variability (HRV) and arterial pressure variability (APV). No microinjected substance affected basal parameters. On the other hand, compared with the control data (saline, 0.3 µL; n=7), OT (10 ng) decreased mean AP (MAP50) after baroreflex stimulation and increased both the mean AP response after chemoreflex activation and the high-frequency component of the HRV. OT (25 pg) increased overall HRV but did not affect any parameter of the symbolic analysis. SST (1 μM) decreased MAP50, and SST (0.05 μM) enhanced the sympathovagal cardiac index. Both doses of SST increased HRV and its low-frequency component. Ang II (50 pmol) increased HRV and reduced the two unlike variations pattern of the symbolic analysis (P<0.05 in all cases). These results demonstrate neuropeptidergic actions in the MePD for both the increase in the range of the cardiovascular reflex responses and the involvement of the central sympathetic and parasympathetic systems on HRV and APV.