965 resultados para Surface of section
Resumo:
In vascular plants, the best-known feature of a differentiated endodermal cell is the "Casparian Strip" (CS). This structure refers to a highly localized cell wall impregnation in the transversal and anticlinal walls of the cell, which surrounds the cell like a belt/ring and is tightly coordinated with respect to neighboring cells. Analogous to tight junctions in animal epithelia, CS in plants act as a diffusion barrier that controls the movement of water and ions from soil into the stele. Since its first description by Robert Caspary in 1865 there have been many attempts to identify the chemical nature of the cell wall deposition in CS. Suberin, lignin, or both have been claimed to be the important components of CS in a series of different species. However, the exact chemical composition of CS has remained enigmatic. This controversy was due to the confusion and lack of knowledge regarding the precise measurement of three developmental stages of the endodermis. The CS represent only the primary stage of endodermal differentiation, which is followed by the deposition of suberin lamellae all around the cellular surface of endodermal cells (secondary developmental stage). Therefore, chemical analysis of whole roots, or even of isolated endodermal tissues, will always find both of the polymers present. It was crucial to clarify this point because this will guide our efforts to understand which cell wall biosynthetic component becomes localized in order to form the CS. The main aim of my work was to find out the major components of (early) CS, as well as their spatial and temporal development, physiological roles and relationship to barrier formation. Employing the knowledge and tools that have been accumulated over the last few years in the model plant Arabidopsis thaliana, various histological and chemical assays were used in this study. A particular feature of my work was to completely degrade, or inhibit formation of lignin and suberin biopolymers by biochemical, classical genetic and molecular approaches and to investigate its effect on CS formation and the establishment of a functional diffusion barrier. Strikingly, interference with monolignol biosynthesis abrogates CS formation and delays the formation of function diffusion barrier. In contrast, transgenic plants devoid of any detectable suberin still develop a functional CS. The combination of all these assays clearly demonstrates that the early CS polymer is made from monolignol (lignin monomers) and is composed of lignin. By contrast, suberin is formed much later as a secondary wall during development of endodermis. These early CS are functionally sufficient to block extracellular diffusion and suberin does not play important role in the establishment of early endodermal diffusion barrier. Moreover, suberin biosynthetic machinery is not present at the time of CS formation. Our study finally concludes the long-standing debate about the chemical nature of CS and opens the door to a new approach in lignin research, specifically for the identification of the components of the CS biosynthetic pathway that mediates the localized deposition of cell walls. I also made some efforts to understand the patterning and differentiation of endodermal passage cells in young roots. In the literature, passage cells are defined as a non- suberized xylem pole associated endodermal cells. Since these cells only contain the CS but not the suberin lamellae, it has been assumed that these cells may offer a continued low-resistance pathway for water and minerals into the stele. Thus far, no genes have been found to be expressed specifically in passage cells. In order to understand the patterning, differentiation, and physiological role of passage it would be crucial to identify some genes that are exclusively expressed in these cells. In order to identify such genes, I first generated fluorescent marker lines of stele-expressed transporters that have been reported to be expressed in the passage cells. My aim was to first highlight the passage cells in a non-specific way. In order to find passage cell specific genes I then adapted a two-component system based on previously published methods for gene expression profiling of individual cell types. This approach will allow us to target only the passage cells and then to study gene expression specifically in this cell type. Taken together, this preparatory work will provide an entry point to understand the formation and role of endodermal passage cells. - Chez les plantes vasculaires, la caractéristique la plus commune des cellules différentiées de l'endoderme est la présence de cadres de Caspary. Cette structure correspond à une imprégnation localisée des parties transversales et anticlinales de la paroi cellulaire. Cela donne naissance, autour de la cellule, à un anneau/cadre qui est coordonné par rapport aux cellules voisines. De manière analogue aux jonctions serrées des épithéliums chez les animaux, les cadres de Caspary agissent chez les plantes comme barrière de diffusion, contrôlant le mouvement de l'eau et des ions à travers la racine entre le sol et la stèle. Depuis leur première description par Robert Caspary en 1865, beaucoup de tentatives ont eu pour but de définir la nature chimique de ces cadres de Caspary. Après l'étude de différentes espèces végétales, à la fois la subérine, la lignine ou les deux ont été revendiquées comme étant des composants importants de ces cadres. Malgré tout, leur nature chimique exacte est restée longtemps énigmatique. Cette controverse provient de la confusion et du manque de connaissance concernant la détermination précise des trois stades de développement de l'endoderme. Les cadres de Caspary représentent uniquement le stade primaire de différentiation de l'endoderme. Celui-ci est suivi par le second stade de différentiation, la déposition de lamelles de subérine tout autour de la cellule endodermal. De ce fait, l'analyse chimique de racines entières ou de cellules d'endoderme isolées ne permet pas de séparer les stades de différentiation primaire et secondaire et aboutit donc à la présence des deux polymères. Il est également crucial de clarifier ce point dans le but de connaître quelle machinerie cellulaire localisée à la paroi cellulaire permet l'élaboration des cadres de Caspary. En utilisant les connaissances et les outils accumulés récemment grâce à la plante modèle Arabidopsis thaliana, divers techniques histologiques et chimiques ont été utilisées dans cette étude. Un point particulier de mon travail a été de dégrader ou d'inhiber complètement la formation de lignine ou de subérine en utilisant des approches de génétique classique ou moléculaire. Le but étant d'observer l'effet de l'absence d'un de ces deux polymères sur la formation des cadres de Caspary et l'établissement d'une barrière de diffusion fonctionnelle. De manière frappante, le fait d'interférer avec la voie de biosynthèse de monolignol (monomères de lignine) abolit la formation des cadres de Caspary et retarde l'élaboration d'une barrière de diffusion fonctionnelle. Par contre, des plantes transgéniques dépourvues d'une quantité détectable de subérine sont quant à elles toujours capables de développer des cadres de Caspary fonctionnels. Mises en commun, ces expériences démontrent que le polymère formant les cadres de Caspary dans la partie jeune de la racine est fait de monolignol, et que de ce fait il s'agit de lignine. La subérine, quant à elle, est formée bien plus tard durant le développement de l'endoderme, de plus il s'agit d'une modification de la paroi secondaire. Ces cadres de Caspary précoces faits de lignine suffisent donc à bloquer la diffusion extracellulaire, contrairement à la subérine. De plus, la machinerie de biosynthèse de la subérine n'est pas encore présente au moment de la formation des cadres de Caspary. Notre étude permet donc de mettre un terme au long débat concernant la nature chimique des cadres de Caspary. De plus, elle ouvre la porte à de nouvelles approches dans la recherche sur la lignine, plus particulièrement pour identifier des composants permettant la déposition localisée de ce polymère dans la paroi cellulaire. J'ai aussi fais des efforts pour mettre en évidence la formation ainsi que le rôle des cellules de passage dans les jeunes racines. Dans la littérature, les cellules de passage sont définies comme de la cellule endodermal faisant face aux pôles xylèmes et dont la paroi n'est pas subérisée. Du fait que ces cellules contiennent uniquement des cadres de Caspary et pas de lamelle de subérine, il a été supposé qu'elles ne devraient offrir que peu de résistance au passage de l'eau et des nutriments entre le sol et la stèle. Le rôle de ces cellules de passage est toujours loin d'être clair, de plus aucun gène s'exprimant spécifiquement dans ces cellules n'a été découvert à ce jour. De manière à identifier de tels gènes, j'ai tout d'abord généré des marqueurs fluorescents pour des transporteurs exprimés dans la stèle mais dont l'expression avait également été signalée dans l'endoderme, uniquement dans les cellules de passage. J'ai ensuite développé un système à deux composants basé sur des méthodes déjà publiées, visant principalement à étudier le profil d'expression génique dans un type cellulaire donné. En recoupant les gènes exprimés spécifiquement dans l'endoderme à ceux exprimés dans la stèle et les cellules de passage, il nous sera possible d'identifier le transriptome spécifique de ces cellules. Pris dans leur ensemble, ces résultats devraient donner un bon point d'entrée dans la définition et la compréhension des cellules de passage.
Resumo:
The analysis of the skeletons of past human populations provides some of the best biological data regarding the history of significant diseases such as tuberculosis. The purpose of this study is to present the pathological alterations of the bones in this disease deriving from the ancient time of the territory of the Hungarian Great Plain on the basis of the earlier references and new cases. The bone changes in tuberculosis were mainly manifested in the vertebrae and less frequently in the hip, however, further alterations were observed on the surface of the endocranium and the ribs.
Resumo:
A strategy to improve the immunogenicity of candidate vaccines is to trigger the innate immune system. Triggering of CD40 at the surface of dendritic cells (DC) is essential in the induction of an efficient immune response. Although CD40 agonist antibodies have been shown to be potent inducers of immune responses in experimental models, serious safety concerns have been raised for their use in humans. In addition, the production of soluble functional CD40 ligand has been challenging and the soluble form existing so far is not developed anymore. Here, we have evaluated the potency of a new soluble form of hexameric CD40 ligand (sCD40L) to serve as an adjuvant for anti-viral T cell responses. sCD40L was able to activate human DC and to enhance virus-specific memory T cell responses. These results demonstrate that this soluble form of CD40 ligand may serve as an adjuvant for T cell response and thus provide the rationale for its potential use in T cell based vaccine strategies.
Resumo:
Rhoptry-associated protein 2 (RAP2) is known to be discharged from rhoptry onto the membrane surface of infected and uninfected erythrocytes (UEs) ex vivo and in vitro and this information provides new insights into the understanding of the pathology of severe anemia in falciparum malaria. In this study, a hexahistidine-tagged recombinant protein corresponding to residues 5-190 of the N-terminal of Plasmodium falciparum RAP2 (rN-RAP2) was produced using a new method of solubilization and purification. Expression was induced with D-lactose, a less expensive alternative inducer to the more common isopropyl-²-D-thio-galactopyranosidase. The recombinant protein was purified using two types of commercially-available affinity columns, iminodiacetic and nitrilotriacetic. rN-RAP2 had immunogenic potential, since it induced high titers of anti-RAP2 antibodies in mice. These antibodies recognized full-length RAP2 prepared from Triton X-100 extracts from two strains of P. falciparum. In fact, the antibody recognized a 29-kDa product of RAP2 cleavage as well as 82 and 70-kDa products of RAP1 cleavage. These results indicate that the two antigens share sequence epitopes. Our expressed protein fragment was shown to contain a functional epitope that is also present in rhoptry-derived ring surface protein 2 which attaches to the surface of both infected and UEs and erythroid precursor cells in the bone marrow of malaria patients. Serum from malaria patients who developed anemia during infection recognized rN-RAP2, suggesting that this protein fragment may be important for epidemiological studies investigating whether immune responses to RAP2 exacerbate hemolysis in falciparum malaria patients.
Resumo:
Eggs and nymphs of Triatoma dimidiata were described using both light and scanning electron microscopy. The egg body and operculum have an exochorion formed by irregular juxtaposed polygonal cells; these cells are without sculpture and the majority of them are hexagonal in shape. The five instars of T. dimidiatacan be distinguished from each other by characteristics of the pre, meso and metanotum. The number of setiferous tubercles increases progressively among instars. The sulcus stridulatorium of 1st instar nymphs is amorphous, showing median parallel grooves; from the 2nd instar on the sulcus is, progressively, elongate, deep and posteriorly pointed with stretched parallel grooves. All instars have a trichobothrium on the apical 1/3 of segment II of the antenna. The opening of the Brindley's gland is on the mesopleura. Fifth instar nymphs have an apical ctenidium on the ventral surface of the fore tibia. Dorsal glabrous patches are found on the lateral 1/3 of abdomen. Bright oval patches are found on the ventral median line of the abdomen, from segment IV-VI; 1st instar nymphs lack these patches. Abdominal dorsal plates are present from the 1st-5th instars; the 1st instar also contains a rectangular plate in segment IX. From the 2nd instar on, variably-shaped plates are present on segments VII to IX. Morphometric data were also obtained and proved to be useful for distinguishing T. dimidiata instars.
Resumo:
Stiffness tomography is a new atomic force microscopy imaging technique that allows highlighting structures located underneath the surface of the sample. In this imaging mode, such structures are identified by investigating their mechanical properties. We present here, for the first time, a description of the use of this technique to acquire detailed stiffness maps of fixed and living macrophages. Indeed, the mechanical properties of several macrophages were studied through stiffness tomography imaging, allowing some insight of the structures lying below the cell's surface. Through these investigations, we were able to evidence the presence and properties of stiff column-like features located underneath the cell membrane. To our knowledge, this is the first evidence of the presence, underneath the cell membrane, of such stiff features, which are in dimension and form compatible with phagosomes. Moreover, by exposing the cells to cytochalasin, we were able to study the induced modifications, obtaining an indication of the location and mechanical properties of the actin cytoskeleton. Copyright © 2012 John Wiley & Sons, Ltd.
Resumo:
Aims: 1) to create a new and reproducible animal model to produce heterotopic ossification (HO) 2) to be able to exactly quantify the amount of HO using a microCT scan and 3) to prove the hypothesis that COX-2 inhibitors are efficacious in the prevention of HO. Methods: We developed a IACUC-approved Lewis rat model, in which the ventral side of the right femur was scraped to mechanically disrupt the periosteum. By clamping the vastus intermedius ischemic injury to the muscle was produced to enhance HO. Finally homologous bone marrow from a donor rat was placed on the anterior surface of the femur. Half of the study group (8 rats) received chow mixed with a COX-2 inhibitor, while the other half received normal chow. After 6 weeks the animals were sacrificed, the femurs removed and imaged by microCT. Grading of HO was based on the thickness of ectopic bone as evaluated in a blinded fashion by 3 independent observers. Results: All animals developed bilateral HO. Rats treated with COX-2 inhibitors developed significantly less ectopic bone than the control group rats. Conclusions: The results suggest that we have created a very reliable, reproducible model to form ectopic bone in rats. Using the microCT we can precisely quantify the amount of HO. We have been able to show that COX-2 inhibitors significantly decrease the amount of HO formation and are thus a good alternative to non-specific NSAIDs with their potential serious side effects on the gastrointestinal tract and on hemo-stastis.
Resumo:
In America, there are two species of Trypanosoma that can infect humans: Trypanosoma cruzi, which is responsible for Chagas disease and Trypanosoma rangeli, which is not pathogenic. We have developed a model of vaccination in mice with T. rangeli epimastigotes that protects against T. cruzi infection. The goal of this work was to study the pattern of specific immunoglobulins in the peritoneum (the site of infection) and in the sera of mice immunized with T. rangeli before and after challenge with T. cruzi. Additionally, we studied the effects triggered by antigen-antibodies binding and the levels of key cytokines involved in the humoral response, such as IL-4, IL-5 and IL-6. The immunization triggered the production of antibodies reactive with T. cruzi in peritoneal fluid (PF) and in serum, mainly IgG1 and, to a lesser magnitude, IgG2. Only immunized mice developed specific IgG3 antibodies in their peritoneal cavities. Antibodies were able to bind to the surface of the parasites and agglutinate them. Among the cytokines studied, IL-6 was elevated in PF during early infection, with higher levels in non-immunized-infected mice. The results indicate that T. rangeli vaccination against T. cruzi infection triggers a high production of specific IgG isotypes in PF and sera before infection and modulates the levels of IL-6 in PF in the early periods of infection.
Resumo:
The transcytotic pathway followed by the polymeric IgA receptor (pIgR) carrying its bound ligand (dIgA) from the basolateral to the apical surface of polarized MDCK cells has been mapped using morphological tracers. At 20 degreesC dIgA-pIgR internalize to interconnected groups of vacuoles and tubules that comprise the endosomal compartment and in which they codistribute with internalized transferrin receptors (TR) and epidermal growth factor receptors (EGFR). Upon transfer to 37 degreesC the endosome vacuoles develop long tubules that give rise to a distinctive population of 100-nm-diam cup-shaped vesicles containing pIgR. At the same time, the endosome gives rise to multivesicular endosomes (MVB) enriched in EGFR and to 60-nm-diam basolateral vesicles. The cup-shaped vesicles carry the dIgA/pIgR complexes to the apical surface where they exocytose. Using video microscopy and correlative electron microscopy to study cells grown thin and flat we show that endosome vacuoles tubulate in response to dIgA/pIgR but that the tubules contain TR as well as pIgR. However, we show that TR are removed from these dIgA-induced tubules via clathrin-coated buds and, as a result, the cup-shaped vesicles to which the tubules give rise become enriched in dIgA/pIgR. Taken together with the published information available on pIgR trafficking signals, our observations suggest that the steady-state concentrations of TR and unoccupied pIgR on the basolateral surface of polarized MDCK cells are maintained by a signal-dependent, clathrin-based sorting mechanism that operates along the length of the transcytotic pathway. We propose that the differential sorting of occupied receptors within the MDCK endosome is achieved by this clathrin-based mechanism continuously retrieving receptors like TR from the pathways that deliver pIgR to the apical surface and EGFR to the lysosome.
Resumo:
Adhesion to host cells is an initial and important step in Acinetobacter baumannii pathogenesis. However, there is relatively little information on the mechanisms by which A. baumannii binds to and interacts with host cells. Adherence to extracellular matrix proteins, such as fibronectin, affords pathogens with a mechanism to invade epithelial cells. Here, we found that A. baumannii adheres more avidly to immobilized fibronectin than to control protein. Free fibronectin used as a competitor resulted in dose-dependent decreased binding of A. baumannii to fibronectin. Three outer membrane preparations (OMPs) were identified as fibronectin binding proteins (FBPs): OMPA, TonB-dependent copper receptor, and 34 kDa OMP. Moreover, we demonstrated that fibronectin inhibition and neutralization by specific antibody prevented significantly the adhesion of A. baumannii to human lung epithelial cells (A549 cells). Similarly, A. baumannii OMPA neutralization by specific antibody decreased significantly the adhesion of A. baumannii to A549 cells. These data indicate that FBPs are key adhesins that mediate binding of A. baumannii to human lung epithelial cells through interaction with fibronectin on the surface of these host cells.
Resumo:
Aquaporins (AQPs) are membrane channels that conduct water and small solutes such as glycerol and are involved in many physiological functions. Aquaporin-based modulator drugs are predicted to be of broad potential utility in the treatment of several diseases. Until today few AQP inhibitors have been described as suitable candidates for clinical development. Here we report on the potent inhibition of AQP3 channels by gold(III) complexes screened on human red blood cells (hRBC) and AQP3-transfected PC12 cells by a stopped-flow method. Among the various metal compounds tested, Auphen is the most active on AQP3 (IC(50) = 0.8±0.08 µM in hRBC). Interestingly, the compound poorly affects the water permeability of AQP1. The mechanism of gold inhibition is related to the ability of Au(III) to interact with sulphydryls groups of proteins such as the thiolates of cysteine residues. Additional DFT and modeling studies on possible gold compound/AQP adducts provide a tentative description of the system at a molecular level. The mapping of the periplasmic surface of an homology model of human AQP3 evidenced the thiol group of Cys40 as a likely candidate for binding to gold(III) complexes. Moreover, the investigation of non-covalent binding of Au complexes by docking approaches revealed their preferential binding to AQP3 with respect to AQP1. The high selectivity and low concentration dependent inhibitory effect of Auphen (in the nanomolar range) together with its high water solubility makes the compound a suitable drug lead for future in vivo studies. These results may present novel metal-based scaffolds for AQP drug development.
Resumo:
In this report we present the growth process of the cobalt oxide system using reactive electron beam deposition. In that technique, a target of metallic cobalt is evaporated and its atoms are in-flight oxidized in an oxygen rich reactive atmosphere before reaching the surface of the substrate. With a trial and error procedure the deposition parameters have been optimized to obtain the correct stoichiometry and crystalline phase. The evaporation conditions to achieve the correct cobalt oxide salt rock structure, when evaporating over amorphous silicon nitride, are: 525 K of substrate temperature, 2.5·10-4 mbar of oxygen partial pressure and 1 Å/s of evaporation rate. Once the parameters were optimized a set of ultra thin film ranging from samples of 1 nm of nominal thickness to 20nm thick and bulk samples were grown. With the aim to characterize the samples and study their microstructure and morphology, X-ray diffraction, transmission electron microscopy, electron diffraction, energy dispersive X-ray spectroscopy and quasi-adiabatic nanocalorimetry techniques are utilised. The final results show a size dependent effect of the antiferromagnetic transition. Its Néel temperature becomes depressed as the size of the grains forming the layer decreases.
Resumo:
In molluscs, internal defence against microorganisms is performed by a single cell type, i.e., the haemocyte or amoebocyte. The origin of these cells in Biomphalaria glabrata was initially thought to be localised within the vasculo-connective tissue. More recently, origin from a single organ, termed the amoebocyte-producing organ (APO), has been postulated based on the occurrence of hyperplasia and mitoses during Schistosoma mansoni infection. The present investigation represents a histological, immuno-histochemical and ultra-structural study of the B. glabrata APO, whereby histological identification was facilitated by means of collecting epithelial basophilic cells. These cells were comprised of single-cell layers that cover a portion of the stroma, which contains many small, round cells and haemolymph sinuses, as well as a small area of the pericardial surface of the reno-pericardial region. On occasion, this epithelial component vaguely resembled the vertebrate juxtaglomerular apparatus, which reinforces its presumed relationship to the kidney. Both in normal and infected molluscs, mitoses were only occasionally found. The present quantitative studies failed to demonstrate the presence of APO cellular hyperplasia, either in normal or schistosome-infected B. glabrata. Conversely, several structural details from the APO region in B. glabrata were found to be consistent with the hypothesis that the APO is a filtration organ, i.e., it is more closely related to the kidney rather than the bone marrow, as has been suggested in the literature.
Resumo:
The BTAF1 transcription factor interacts with TATA-binding protein (TBP) to form the B-TFIID complex, which is involved in RNA polymerase II transcription. Here, we present an extensive mapping study of TBP residues involved in BTAF1 interaction. This shows that residues in the concave, DNA-binding surface of TBP are important for BTAF1 binding. In addition, BTAF1 interacts with residues in helix 2 on the convex side of TBP as assayed in protein-protein and in DNA-binding assays. BTAF1 drastically changes the TATA-box binding specificity of TBP, as it is able to recruit DNA-binding defective TBP mutants to both TATA-containing and TATA-less DNA. Interestingly, other helix 2 interacting factors, such as TFIIA and NC2, can also stabilize mutant TBP binding to DNA. In contrast, TFIIB which interacts with a distinct surface of TBP does not display this activity. Since many proteins contact helix 2 of TBP, this provides a molecular basis for mutually exclusive TBP interactions and stresses the importance of this structural element for eukaryotic transcription.
Resumo:
The diagnosis of infections involving internal or external neurosurgical drainage devices is challenging, and to our knowledge no single reliable microbiological test exists. We used sonication to study bacterial colonization in 14 explanted external ventricular drains (EVD) and 13 ventriculo-peritoneal shunt (VPS) devices. This technique dislodges biofilm bacteria from the surface of implanted materials before culture. Removed devices were sonicated in saline (40 kHz, 1 minute, 0.25 W/cm(2)), the resulting fluid was cultured aerobically and anaerobically at 37°C, and bacterial growth was counted. Ventricular cerebrospinal fluid (CSF) was cultured separately. In the EVD group, sonication cultures grew significantly more bacteria (64%, 9/14) than cultures of aspirated ventricular CSF (14%, 2/14). In the VPS group the difference was not significant. Positive sonication cultures of EVD catheters yielded a median of >100 colony forming units (CFU) (range, 60-800). For positive sonication cultures of VPS, the median was 1000 CFU (range, 20-100,000). All patients with bacteria in their CSF also had positive sonication cultures from the removed device. Of the five patients with sterile or presumably contaminated CSF cultures but positive sonication cultures of removed shunts, one became afebrile after removal of the EVD, two developed meningitis and two remained asymptomatic. Sonication culture of EVD appears to improve the microbiological assessment of device-related infection and it corroborates with CSF cultures of revision surgery for VPS. Sonication of the removed EVD tip may raise awareness for the onset of meningitis.