807 resultados para Supervised and Unsupervised Classification
Resumo:
Light Detection and Ranging (LIDAR) has great potential to assist vegetation management in power line corridors by providing more accurate geometric information of the power line assets and vegetation along the corridors. However, the development of algorithms for the automatic processing of LIDAR point cloud data, in particular for feature extraction and classification of raw point cloud data, is in still in its infancy. In this paper, we take advantage of LIDAR intensity and try to classify ground and non-ground points by statistically analyzing the skewness and kurtosis of the intensity data. Moreover, the Hough transform is employed to detected power lines from the filtered object points. The experimental results show the effectiveness of our methods and indicate that better results were obtained by using LIDAR intensity data than elevation data.
Resumo:
In recent years the air transport industry has experienced unprecedented growth, driven by strong local and global economies. Whether this growth can continue in the face of anticipated oil crises; international economic forecasts and recent influenza outbreaks is yet to be seen. One thing is certain, airport owners and operators will continue to be faced with challenging environments in which to do business. In response, many airports recognize the value in diversifying their revenue streams through a variety of landside property developments within the airport boundary. In Australia it is the type and intended market of this development that is a point of contention between private airport corporations and their surrounding municipalities. The aim of this preliminary research is to identify and categorize on-airport development occurring at the twenty-two privatized Australian airports which are administered under the Airports Act [1996]. This new knowledge will assist airport and municipal planners in understanding the current extent and category of on-airport land use, allowing them to make better decisions when proposing development both within airport master plans and beyond the airport boundary in local town and municipal plans.
Resumo:
This report explains the objectives, datasets and evaluation criteria of both the clustering and classification tasks set in the INEX 2009 XML Mining track. The report also describes the approaches and results obtained by the different participants.
Resumo:
The use of appropriate features to characterize an output class or object is critical for all classification problems. This paper evaluates the capability of several spectral and texture features for object-based vegetation classification at the species level using airborne high resolution multispectral imagery. Image-objects as the basic classification unit were generated through image segmentation. Statistical moments extracted from original spectral bands and vegetation index image are used as feature descriptors for image objects (i.e. tree crowns). Several state-of-art texture descriptors such as Gray-Level Co-Occurrence Matrix (GLCM), Local Binary Patterns (LBP) and its extensions are also extracted for comparison purpose. Support Vector Machine (SVM) is employed for classification in the object-feature space. The experimental results showed that incorporating spectral vegetation indices can improve the classification accuracy and obtained better results than in original spectral bands, and using moments of Ratio Vegetation Index obtained the highest average classification accuracy in our experiment. The experiments also indicate that the spectral moment features also outperform or can at least compare with the state-of-art texture descriptors in terms of classification accuracy.
Resumo:
A good object representation or object descriptor is one of the key issues in object based image analysis. To effectively fuse color and texture as a unified descriptor at object level, this paper presents a novel method for feature fusion. Color histogram and the uniform local binary patterns are extracted from arbitrary-shaped image-objects, and kernel principal component analysis (kernel PCA) is employed to find nonlinear relationships of the extracted color and texture features. The maximum likelihood approach is used to estimate the intrinsic dimensionality, which is then used as a criterion for automatic selection of optimal feature set from the fused feature. The proposed method is evaluated using SVM as the benchmark classifier and is applied to object-based vegetation species classification using high spatial resolution aerial imagery. Experimental results demonstrate that great improvement can be achieved by using proposed feature fusion method.
Resumo:
Graduated licensing schemes have been found to reduce the crash risk of young novice drivers, but there is less evidence of their success with novice motorcycle riders. This study examined the riding experience of a sample of Australian learner-riders to establish the extent and variety of their riding practice during the learner stage. Riders completed an anonymous questionnaire at a compulsory rider-training course for the licensing test. The majority of participants were male (81%) with an average age of 33 years. They worked full time (81%), held an unrestricted driver's license (81%), and owned the motorcycle that they rode (79%). These riders had held their learner's license for an average of 6 months. On average, they rode 6.4 h/week. By the time they attempted the rider-licensing test, they had ridden a total of 101 h. Their total hours of on-road practice were comparable to those of learner-drivers at the same stage of licensing, but they had less experience in adverse or challenging road conditions. A substantial proportion had little or no experience of riding in the rain (57%), at night (36%), in heavy traffic (22%), on winding rural roads (52%), or on high-speed roads (51%). These findings highlight the differences in the learning processes between unsupervised novice motorcycle riders and supervised novice drivers. Further research is necessary to clarify whether specifying the conditions under which riders should practice during the graduated licensing process would likely reduce or increase their crash risk.
Resumo:
Anthropometric assessment is a simple, safe, and cost-efficient method to examine the health status of individu-als. The Japanese obesity classification based on the sum of two skin folds (Σ2SF) was proposed nearly 40 years ago therefore its applicability to Japanese living today is unknown. The current study aimed to determine Σ2SF cut-off values that correspond to percent body fat (%BF) and BMI values using two datasets from young Japa-nese adults (233 males and 139 females). Using regression analysis, Σ2SF and height-corrected Σ2SF (HtΣ2SF) values that correspond to %BF of 20, 25, and 30% for males and 30, 35, and 40% for females were determined. In addition, cut-off values of both Σ2SF and HtΣ2SF that correspond to BMI values of 23 kg/m2, 25 kg/m2 and 30 kg/m2 were determined. In comparison with the original Σ2SF values, the proposed values are smaller by about 10 mm at maximum. The proposed values show an improvement in sensitivity from about 25% to above 90% to identify individuals with ≥20% body fat in males and ≥30% body fat in females with high specificity of about 95% in both genders. The results indicate that the original Σ2SF cut-off values to screen obese individuals cannot be applied to young Japanese adults living today and modification is required. Application of the pro-posed values may assist screening in the clinical setting.
Resumo:
The use of appropriate features to represent an output class or object is critical for all classification problems. In this paper, we propose a biologically inspired object descriptor to represent the spectral-texture patterns of image-objects. The proposed feature descriptor is generated from the pulse spectral frequencies (PSF) of a pulse coupled neural network (PCNN), which is invariant to rotation, translation and small scale changes. The proposed method is first evaluated in a rotation and scale invariant texture classification using USC-SIPI texture database. It is further evaluated in an application of vegetation species classification in power line corridor monitoring using airborne multi-spectral aerial imagery. The results from the two experiments demonstrate that the PSF feature is effective to represent spectral-texture patterns of objects and it shows better results than classic color histogram and texture features.
Resumo:
We present the findings of a study into the implementation of explicitly criterion- referenced assessment in undergraduate courses in mathematics. We discuss students' concepts of criterion referencing and also the various interpretations that this concept has among mathematics educators. Our primary goal was to move towards a classification of criterion referencing models in quantitative courses. A secondary goal was to investigate whether explicitly presenting assessment criteria to students was useful to them and guided them in responding to assessment tasks. The data and feedback from students indicates that while students found the criteria easy to understand and useful in informing them as to how they would be graded, it did not alter the way the actually approached the assessment activity.
Resumo:
This presentation discusses some of the general issues relating to the classification of UAS for the purposes of defining and promulgating safety regulations. One possible approach for the definition of a classification scheme for UAS Type Certification Categories reviewed.