953 resultados para Sulfate Homeostasis
Resumo:
The fibroblast growth factor (FGF) family consists of 22 evolutionarily and structurally related proteins (FGF1 to FGF23; with FGF15 being the rodent ortholog of human FGF19). Based on their mechanism of action, FGFs can be categorized into intracrine, autocrine/paracrine and endocrine subgroups. Both autocrine/paracrine and endocrine FGFs are secreted from their cells of origin and exert their effects on target cells by binding to and activating specific single-pass transmembrane tyrosine kinase receptors (FGFRs). Moreover, FGF binding to FGFRs requires specific cofactors, namely heparin/heparan sulfate proteoglycans or Klothos for autocrine/paracrine and endocrine FGF signaling, respectively. FGFs are vital for embryonic development and mediate a broad spectrum of biological functions, ranging from cellular excitability to angiogenesis and tissue regeneration. Over the past decade certain FGFs (e.g. FGF1, FGF10, FGF15/FGF19 and FGF21) have been further recognized as regulators of energy homeostasis, metabolism and adipogenesis, constituting novel therapeutic targets for obesity and obesity-related cardiometabolic disease. Until recently, translational research has been mainly focused on FGF21, due to the pleiotropic, beneficial metabolic actions and the relatively benign safety profile of its engineered variants. However, increasing evidence regarding the role of additional FGFs in the regulation of metabolic homeostasis and recent developments regarding novel, engineered FGF variants have revitalized the research interest into the therapeutic potential of certain additional FGFs (e.g. FGF1 and FGF15/FGF19). This review presents a brief overview of the FGF family, describing the mode of action of the different FGFs subgroups, and focuses on FGF1 and FGF15/FGF19, which appear to also represent promising new targets for the treatment of obesity and type 2 diabetes.
Resumo:
BACKGROUND Canine inflammatory bowel disease (IBD) is a chronic enteropathy of unknown etiology, although microbiome dysbiosis, genetic susceptibility, and dietary and/or environmental factors are hypothesized to be involved in its pathogenesis. Since some of the current therapies are associated with severe side effects, novel therapeutic modalities are needed. A new oral supplement for long-term management of canine IBD containing chondroitin sulfate (CS) and prebiotics (resistant starch, β-glucans and mannaoligosaccharides) was developed to target intestinal inflammation and oxidative stress, and restore normobiosis, without exhibiting any side effects. This double-blinded, randomized, placebo-controlled trial in dogs with IBD aims to evaluate the effects of 180 days administration of this supplement together with a hydrolyzed diet on clinical signs, intestinal histology, gut microbiota, and serum biomarkers of inflammation and oxidative stress. RESULTS Twenty-seven client-owned biopsy-confirmed IBD dogs were included in the study, switched to the same hydrolyzed diet and classified into one of two groups: supplement and placebo. Initially, there were no significant differences between groups (p > 0.05) for any of the studied parameters. Final data analysis (supplement: n = 9; placebo: n = 10) showed a significant decrease in canine IBD activity index (CIBDAI) score in both groups after treatment (p < 0.001). After treatment, a significant decrease (1.53-fold; p < 0.01) in histologic score was seen only in the supplement group. When groups were compared, the supplement group showed significantly higher serum cholesterol (p < 0.05) and paraoxonase-1 (PON1) levels after 60 days of treatment (p < 0.01), and the placebo group showed significantly reduced serum total antioxidant capacity (TAC) levels after 120 days (p < 0.05). No significant differences were found between groups at any time point for CIBDAI, WSAVA histologic score and fecal microbiota evaluated by PCR-restriction fragment length polymorphism (PCR-RFLP). No side effects were reported in any group. CONCLUSIONS The combined administration of the supplement with hydrolyzed diet over 180 days was safe and induced improvements in selected serum biomarkers, possibly suggesting a reduction in disease activity. This study was likely underpowered, therefore larger studies are warranted in order to demonstrate a supplemental effect to dietary treatment of this supplement on intestinal histology and CIBDAI.
Resumo:
Using budding yeast, we investigated a negative interaction network among genes for tRNA modifications previously implicated in anticodon-codon interaction: 5-methoxy-carbonyl-methyl-2-thio-uridine (mcm5s2U34: ELP3, URM1), pseudouridine (Ψ38/39: DEG1) and cyclic N6-threonyl-carbamoyl-adenosine (ct6A37: TCD1). In line with functional cross talk between these modifications, we find that combined removal of either ct6A37 or Ψ38/39 and mcm5U34 or s2U34 results in morphologically altered cells with synthetic growth defects. Phenotypic suppression by tRNA overexpression suggests that these defects are caused by malfunction of tRNALysUUU or tRNAGlnUUG, respectively. Indeed, mRNA translation and synthesis of the Gln-rich prion Rnq1 are severely impaired in the absence of Ψ38/39 and mcm5U34 or s2U34, and this defect can be rescued by overexpression of tRNAGlnUUG. Surprisingly, we find that combined modification defects in the anticodon loops of different tRNAs induce similar cell polarity- and nuclear segregation defects that are accompanied by increased aggregation of cellular proteins. Since conditional expression of an artificial aggregation-prone protein triggered similar cytological aberrancies, protein aggregation is likely responsible for loss of morphogenesis and cytokinesis control in mutants with inappropriate tRNA anticodon loop modifications.
Resumo:
This study presents results on a developed methodology to characterize ground layers in Portuguese workshops. In this work a set of altarpieces of the 15th and 16th centuries, assigned to Coimbra painting workshop was studied, overall the masters Vicente Gil (doc. Coimbra 1498–1525), Manuel Vicente (doc. Coimbra 1521–1530) and Bernardo Manuel (act. c. 1559–94), father, son and grandson, encompassing from late gothic to mannerist periods. The aim of the study is to compare ground layers, fillers and binders of Coimbra workshop, and to correlate their characteristics to understand the technical evolution of this family of painters, using complementary microscopic techniques. The cross-sections from the groups of paintings were examined by optical microscopy and the results were integrated through the analysis obtained by μ-X–ray diffraction, scanning electron microscopy with energy dispersive X–ray Spectrometry, μ-confocal Raman and occasionally with μ-Fourier transform infrared spectroscopy imaging. Ground layers are of calcium sulfate, present as gesso grosso (mainly anhydrite with small amounts of gypsum) in the first and last phases of the workshop and gesso mate (mainly gypsum with small amounts of anhydrite) in an intermediate period. Binders have protein and oleic characteristics.
Resumo:
The nitrosylated form of glutathione (GSNO) has been acknowledged to be the most important nitrosylating agent of the plant cell, and the tuning of its intracellular concentration is of pivotal importance for photosynthetic life. During my time as a PhD student, I focused my attention on the enzymatic systems involved in the degradation of GSNO. Hence, we decided to study the structural and catalytic features of alcohol dehydrogenases (GSNOR and ADH1) from the model land plant Arabidopsis thaliana (At). These enzymes displayed a very similar 3D structure except for their active site which might explain the extreme catalytic specialization of the two enzymes. They share NAD(H) as a cofactor, but only AtGSNOR was able to catalyze the reduction of GSNO whilst being ineffective in oxidizing ethanol. Moreover, our study on the enzyme from the unicellular green alga Chlamydomonas reinhardtii (Cr) revealed how this S-nitrosoglutathione reductase (GSNOR) specifically use NADH to catalyze GSNO reduction and how its activity responds to thiol-based post-translational modifications. Contextually, the presence of NADPH-dependent GSNO-degrading systems in algal protein extract was highlighted and resulted to be relatively efficient in this model organism. This activity could be ascribed to several proteins whose contribution has not been defined yet. Intriguingly, protein extract from GSNOR null mutants of Arabidopsis displayed an increased NADPH-dependent ability to degrade GSNO and our quantitative proteome profiling on the gsnor mutant revealed the overexpression of two class 4 aldo-keto reductases (AKR), specifically AtAKR4C8 and AtAKR4C9. Later, all four class 4 AKRs showed to possess a NADPH-dependent GSNO-degrading activity. Finally, we initiated a preliminary analysis to determine the kinetic parameters of several plant proteins, including GSNOR, AKR4Cs, and thioredoxins. These data suggested GSNOR to be the most effective enzyme in catalyzing GSNO reduction because of its extremely high catalytic proficiency compared to NADPH-dependent systems.
Resumo:
Bone marrow is organized in specialized microenvironments known as 'marrow niches'. These are important for the maintenance of stem cells and their hematopoietic progenitors whose homeostasis also depends on other cell types present in the tissue. Extrinsic factors, such as infection and inflammatory states, may affect this system by causing cytokine dysregulation (imbalance in cytokine production) and changes in cell proliferation and self-renewal rates, and may also induce changes in the metabolism and cell cycle. Known to relate to chronic inflammation, obesity is responsible for systemic changes that are best studied in the cardiovascular system. Little is known regarding the changes in the hematopoietic system induced by the inflammatory state carried by obesity or the cell and molecular mechanisms involved. The understanding of the biological behavior of hematopoietic stem cells under obesity-induced chronic inflammation could help elucidate the pathophysiological mechanisms involved in other inflammatory processes, such as neoplastic diseases and bone marrow failure syndromes.
Resumo:
Viscosupplements, used for treating joint and cartilage diseases, restore the rheological properties of synovial fluid, regulate joint homeostasis and act as scaffolds for cell growth and tissue regeneration. Most viscosupplements are hydrogels composed of hyaluronic acid (HA) microparticles suspended in fluid HA. These microparticles are crosslinked with chemicals to assure their stability against enzyme degradation and to prolong the action of the viscosupplement. However, the crosslinking also modifies the mechanical, swelling and rheological properties of the HA microparticle hydrogels, with consequences on the effectiveness of the application. The aim of this study is to correlate the crosslinking degree (CD) with these properties to achieve modulation of HA/DVS microparticles through CD control. Because divinyl sulfone (DVS) is the usual crosslinker of HA in viscosupplements, we examined the effects of CD by preparing HA microparticles at 1:1, 2:1, 3:1, and 5:1 HA/DVS mass ratios. The CD was calculated from inductively coupled plasma spectrometry data. HA microparticles were previously sized to a mean diameter of 87.5 µm. Higher CD increased the viscoelasticity and the extrusion force and reduced the swelling of the HA microparticle hydrogels, which also showed Newtonian pseudoplastic behavior and were classified as covalent weak. The hydrogels were not cytotoxic to fibroblasts according to an MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) assay. © 2014 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2014.
Resumo:
Acid drainage influence on the water and sediment quality was investigated in a coal mining area (southern Brazil). Mine drainage showed pH between 3.2 and 4.6 and elevated concentrations of sulfate, As and metals, of which, Fe, Mn and Zn exceeded the limits for the emission of effluents stated in the Brazilian legislation. Arsenic also exceeded the limit, but only slightly. Groundwater monitoring wells from active mines and tailings piles showed pH interval and chemical concentrations similar to those of mine drainage. However, the river and ground water samples of municipal public water supplies revealed a pH range from 7.2 to 7.5 and low chemical concentrations, although Cd concentration slightly exceeded the limit adopted by Brazilian legislation for groundwater. In general, surface waters showed large pH range (6 to 10.8), and changes caused by acid drainage in the chemical composition of these waters were not very significant. Locally, acid drainage seemed to have dissolved carbonate rocks present in the local stratigraphic sequence, attenuating the dispersion of metals and As. Stream sediments presented anomalies of these elements, which were strongly dependent on the proximity of tailings piles and abandoned mines. We found that precipitation processes in sediments and the dilution of dissolved phases were responsible for the attenuation of the concentrations of the metals and As in the acid drainage and river water mixing zone. In general, a larger influence of mining activities on the chemical composition of the surface waters and sediments was observed when enrichment factors in relation to regional background levels were used.
Resumo:
To estimate the impact of aging and diabetes on insulin sensitivity, beta-cell function, adipocytokines, and incretin production. Hyperglycemic clamps, arginine tests and meal tolerance tests were performed in 50 non-obese subjects to measure insulin sensitivity (IS) and insulin secretion as well as plasma levels of glucagon, GLP-1 and GIP. Patients with diabetes and healthy control subjects were divided into the following groups: middle-aged type 2 diabetes (MA-DM), aged Type 2 diabetes (A-DM) and middle-aged or aged subjects with normal glucose tolerance (MA-NGT or A-NGT). IS, as determined by the homeostasis model assessment, glucose infusion rate, and oral glucose insulin sensitivity, was reduced in the aged and DM groups compared with MA-NGT, but it was similar in the MA-DM and A-DM groups. Insulinogenic index, first and second phase insulin secretion and the disposition indices, but not insulin response to arginine, were reduced in the aged and DM groups. Postprandial glucagon production was higher in MA-DM compared to MA-NGT. Whereas the GLP-1 production was reduced in A-DM, no differences between groups were observed in GIP production. In non-obese subjects, diabetes and aging impair insulin sensitivity. Insulin production is reduced by aging, and diabetes exacerbates this condition. Aging associated defects superimposed diabetic physiopathology, particularly regarding GLP-1 production. On the other hand, the glucose-independent secretion of insulin was preserved. Knowledge of the complex relationship between aging and diabetes could support the development of physiopathological and pharmacological based therapies.
Resumo:
Uncoupling protein one (UCP1) is a mitochondrial inner membrane protein capable of uncoupling the electrochemical gradient from adenosine-5'-triphosphate (ATP) synthesis, dissipating energy as heat. UCP1 plays a central role in nonshivering thermogenesis in the brown adipose tissue (BAT) of hibernating animals and small rodents. A UCP1 ortholog also occurs in plants, and aside from its role in uncoupling respiration from ATP synthesis, thereby wasting energy, it plays a beneficial role in the plant response to several abiotic stresses, possibly by decreasing the production of reactive oxygen species (ROS) and regulating cellular redox homeostasis. However, the molecular mechanisms by which UCP1 is associated with stress tolerance remain unknown. Here, we report that the overexpression of UCP1 increases mitochondrial biogenesis, increases the uncoupled respiration of isolated mitochondria, and decreases cellular ATP concentration. We observed that the overexpression of UCP1 alters mitochondrial bioenergetics and modulates mitochondrial-nuclear communication, inducing the upregulation of hundreds of nuclear- and mitochondrial-encoded mitochondrial proteins. Electron microscopy analysis showed that these metabolic changes were associated with alterations in mitochondrial number, area and morphology. Surprisingly, UCP1 overexpression also induces the upregulation of hundreds of stress-responsive genes, including some involved in the antioxidant defense system, such as superoxide dismutase (SOD), glutathione peroxidase (GPX) and glutathione-S-transferase (GST). As a consequence of the increased UCP1 activity and increased expression of oxidative stress-responsive genes, the UCP1-overexpressing plants showed reduced ROS accumulation. These beneficial metabolic effects may be responsible for the better performance of UCP1-overexpressing lines in low pH, high salt, high osmolarity, low temperature, and oxidative stress conditions. Overexpression of UCP1 in the mitochondrial inner membrane induced increased uncoupling respiration, decreased ROS accumulation under abiotic stresses, and diminished cellular ATP content. These events may have triggered the expression of mitochondrial and stress-responsive genes in a coordinated manner. Because these metabolic alterations did not impair plant growth and development, UCP1 overexpression can potentially be used to create crops better adapted to abiotic stress conditions.
Resumo:
The maintenance of glucose homeostasis is complex and involves, besides the secretion and action of insulin and glucagon, a hormonal and neural mechanism, regulating the rate of gastric emptying. This mechanism depends on extrinsic and intrinsic factors. Glucagon-like peptide-1 secretion regulates the speed of gastric emptying, contributing to the control of postprandial glycemia. The pharmacodynamic characteristics of various agents of this class can explain the effects more relevant in fasting or postprandial glucose, and can thus guide the individualized treatment, according to the clinical and pathophysiological features of each patient.
Resumo:
To determine if magnesium deficiency aggravates the effects of a high-fat diet in growing rats in terms of obesity, lipid profile and insulin resistance. The study population comprised 48 newly weaned male Wistar Hannover rats distributed into four groups according to diet, namely, control group (CT; n = 8), control diet provided ad libitum; pair-feeding control group (PF; n = 16), control diet but in the same controlled amount as animals that received high-fat diets; high-fat diet group (HF; n = 12), and magnesium-deficient high-fat diet group (HFMg(-); n = 12). The parameters investigated were adiposity index, lipid profile, magnesium status, insulin sensitivity and the phosphorylation of proteins involved in the insulin-signaling pathway, i.e. insulin receptor β-subunit, insulin receptor substrate 1 and protein kinase B. The HF and HFMg(-) groups were similar regarding gain in body mass, adiposity index and lipid profile, but were significantly different from the PF group. The HFMg(-) group exhibited alterations in magnesium homeostasis as revealed by the reduction in urinary and bone concentrations of the mineral. No inter-group differences were observed regarding glucose homeostasis. Protein phosphorylation in the insulin-signaling pathway was significantly reduced in the high-fat groups compared with the control groups, demonstrating that the intake of fat-rich diets increased insulin resistance, a syndrome that was aggravated by magnesium deficiency. Under the experimental conditions tested, the intake of a magnesium-deficient high-fat diet led to alterations in the insulin-signaling pathway and, consequently, increased insulin resistance.
Resumo:
Nutrient restriction during the early stages of life usually leads to alterations in glucose homeostasis, mainly insulin secretion and sensitivity, increasing the risk of metabolic disorders in adulthood. Despite growing evidence regarding the importance of insulin clearance during glucose homeostasis in health and disease, no information exists about this process in malnourished animals. Thus, in the present study, we aimed to determine the effect of a nutrient-restricted diet on insulin clearance using a model in which 30-d-old C57BL/6 mice were exposed to a protein-restricted diet for 14 weeks. After this period, we evaluated many metabolic variables and extracted pancreatic islet, liver, gastrocnemius muscle (GCK) and white adipose tissue samples from the control (normal-protein diet) and restricted (low-protein diet, LP) mice. Insulin concentrations were determined using RIA and protein expression and phosphorylation by Western blot analysis. The LP mice exhibited lower body weight, glycaemia, and insulinaemia, increased glucose tolerance and altered insulin dynamics after the glucose challenge. The improved glucose tolerance could partially be explained by an increase in insulin sensitivity through the phosphorylation of the insulin receptor/protein kinase B and AMP-activated protein kinase/acetyl-CoA carboxylase in the liver, whereas the changes in insulin dynamics could be attributed to reduced insulin secretion coupled with reduced insulin clearance and lower insulin-degrading enzyme (IDE) expression in the liver and GCK. In summary, protein-restricted mice not only produce and secrete less insulin, but also remove and degrade less insulin. This phenomenon has the double benefit of sparing insulin while prolonging and potentiating its effects, probably due to the lower expression of IDE in the liver, possibly with long-term consequences.
Resumo:
To evaluate the correlation between neck circumference and insulin resistance and components of metabolic syndrome in adolescents with different adiposity levels and pubertal stages, as well as to determine the usefulness of neck circumference to predict insulin resistance in adolescents. Cross-sectional study with 388 adolescents of both genders from ten to 19 years old. The adolescents underwent anthropometric and body composition assessment, including neck and waist circumferences, and biochemical evaluation. The pubertal stage was obtained by self-assessment, and the blood pressure, by auscultation. Insulin resistance was evaluated by the Homeostasis Model Assessment-Insulin Resistance. The correlation between two variables was evaluated by partial correlation coefficient adjusted for the percentage of body fat and pubertal stage. The performance of neck circumference to identify insulin resistance was tested by Receiver Operating Characteristic Curve. After the adjustment for percentage body fat and pubertal stage, neck circumference correlated with waist circumference, blood pressure, triglycerides and markers of insulin resistance in both genders. The results showed that the neck circumference is a useful tool for the detection of insulin resistance and changes in the indicators of metabolic syndrome in adolescents. The easiness of application and low cost of this measure may allow its use in Public Health services.
Resumo:
To describe the prevalence of hepatic steatosis and to assess the performance of biochemical, anthropometric and body composition indicators for hepatic steatosis in obese teenagers. Cross-sectional study including 79 adolecents aged from ten to 18 years old. Hepatic steatosis was diagnosed by abdominal ultrasound in case of moderate or intense hepatorenal contrast and/or a difference in the histogram ≥7 on the right kidney cortex. The insulin resistance was determined by the Homeostasis Model Assessment-Insulin Resistance (HOMA-IR) index for values >3.16. Anthropometric and body composition indicators consisted of body mass index, body fat percentage, abdominal circumference and subcutaneous fat. Fasting glycemia and insulin, lipid profile and hepatic enzymes, such as aspartate aminotransferase, alanine aminotransferase, gamma-glutamyltransferase and alkaline phosphatase, were also evaluated. In order to assess the performance of these indicators in the diagnosis of hepatic steatosis in teenagers, a ROC curve analysis was applied. Hepatic steatosis was found in 20% of the patients and insulin resistance, in 29%. Gamma-glutamyltransferase and HOMA-IR were good indicators for predicting hepatic steatosis, with a cutoff of 1.06 times above the reference value for gamma-glutamyltransferase and 3.28 times for the HOMA-IR. The anthropometric indicators, the body fat percentage, the lipid profile, the glycemia and the aspartate aminotransferase did not present significant associations. Patients with high gamma-glutamyltransferase level and/or HOMA-IR should be submitted to abdominal ultrasound examination due to the increased chance of having hepatic steatosis.