953 resultados para Substitution homolitique aromatique


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The thermoelectric figure of merit (zT) can be increased by introduction of additional interfaces in the bulk to reduce the thermal conductivity. In this work, PbTe with a dispersed indium (In) phase was synthesized by a matrix encapsulation technique for different In concentrations. x-Ray diffraction analysis showed single-phase PbTe with In secondary phase. Rietveld analysis did not show In substitution at either the Pb or Te site, and this was further confirmed by room-temperature Raman data. Low-magnification (similar to 1500x) scanning electron microscopy images showed micrometer-sized In dispersed throughout the PbTe matrix, while at high magnification (150,000x) an agglomeration of PbTe particles in the hot-pressed samples could be seen. The electrical resistivity (rho) and Seebeck coefficient (S) were measured from 300 K to 723 K. Negative Seebeck values showed all the samples to be n-type. A systematic increase in resistivity and higher Seebeck coefficient values with increasing In content indicated the role of PbTe-In interfaces in the scattering of electrons. This was further confirmed by the thermal conductivity (kappa), measured from 423 K to 723 K, where a greater reduction in the electronic as compared with the lattice contribution was found for In-added samples. It was found that, despite the high lattice mismatch at the PbTe-In interface, phonons were not scattered as effectively as electrons. The highest zT obtained was 0.78 at 723 K for the sample with the lowest In content.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Single-stranded DNA binding proteins (SSBs) are vital in all organisms. SSBs of Escherichia coli (EcoSSB) and Mycobacterium tuberculosis (MtuSSB) are homotetrameric. The N-terminal domains (NTD) of these SSBs (responsible for their tetramerization and DNA binding) are structurally well defined. However, their C-terminal domains (CTD) possess undefined structures. EcoSSB NTD consists of beta 1-beta 1'-beta 2-beta 3-alpha-beta 4-beta 45(1)-beta 45(2)-beta 5 secondary structure elements. MtuSSB NTD includes an additional beta-strand (beta 6) forming a novel hook-like structure. Recently, we observed that MtuSSB complemented an E. coli Delta ssb strain. However, a chimeric SSB (m beta 4-beta 5), wherein only the terminal part of NTD (beta 4-beta 5 region possessing L-45 loop) of EcoSSB was substituted with that from MtuSSB, failed to function in E. coli in spite of its normal DNA binding and oligomerization properties. Here, we designed new chimeras by transplanting selected regions of MtuSSB into EcoSSB to understand the functional significance of the various secondary structure elements within SSB. All chimeric SSBs formed homotetramers and showed normal DNA binding. The m beta 4-beta 6 construct obtained by substitution of the region downstream of beta 5 in m beta 4-beta 5 SSB with the corresponding region (beta 6) of MtuSSB complemented the E. coli strain indicating a functional interaction between the L-45 loop and the beta 6 strand of MtuSSB.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An investigation of a series of seven angular ``V'' shaped NPIs (1-7) is presented. The effect of substitution of these structurally similar NPIs on their photophysical properties in the solution-state and the solid-state is presented and discussed in light of experimental and computational findings. Compounds 1-7 show negligible to intensely strong emission yields in their solid-state depending on the nature of substituents appended to the oxoaryl moiety. The solution and solid-state properties of the compounds can be directly correlated with their structural rigidity, nature of substituents and intermolecular interactions. The versatile solid-state structures of the NPI siblings are deeply affected by the pendant substituents. All of the NPIs (1-7) show antiparallel dimeric pi-pi stacking interactions in their solid-state which can further extend in a parallel, alternate, orthogonal or lateral fashion depending on the steric and electronic nature of the C-4' substituents. Structural investigations including Hirshfeld surface analysis methods reveal that where strongly interacting systems show weak to moderate emission in their condensed states, weakly interacting systems show strong emission yields under the same conditions. The nature of packing and extended structures also affects the emission colors of the NPIs in their solid-states. Furthermore, DFT computational studies were utilized to understand the molecular and cumulative electronic behaviors of the NPIs. The comprehensive studies provide insight into the condensed-state luminescence of aggregationprone small molecules like NPIs and help to correlate the structure-property relationships.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In programmed -1 ribosomal frameshift, an RNA pseudoknot stalls the ribosome at specific sequence and restarts translation in a new reading frame. A precise understanding of structural characteristics of these pseudoknots and their PRF inducing ability has not been clear to date. To investigate this phenomenon, we have studied various structural aspects of a -1 PRF inducing RNA pseudoknot from BWYV using extensive molecular dynamics simulations. A set of functional and poorly functional forms, for which previous mutational data were available, were chosen for analysis. These structures differ from each other by either single base substitutions or base-pair replacements from the native structure. We have rationalized how certain mutations in RNA pseudoknot affect its function; e.g., a specific base substitution in loop 2 stabilizes the junction geometry by forming multiple noncanonical hydrogen bonds, leading to a highly rigid structure that could effectively resist ribosome-induced unfolding, thereby increasing efficiency. While, a CG to AU pair substitution in stem 1 leads to loss of noncanonical hydrogen bonds between stems and loop, resulting in a less stable structure and reduced PRF inducing ability, inversion of a pair in stem 2 alters specific base-pair geometry that might be required in ribosomal recognition of nucleobase groups, negatively affecting pseudoknot functioning. These observations illustrate that the ability of an RNA pseudoknot to induce -1 PRF with an optimal rate depends on several independent factors that contribute to either the local conformational variability or geometry

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The static and dynamic pressure concentration isotherms (PCIs) of MmNi(5-x)Al(x). (x = 0, 0.3, 0.5 and 0.8) hydrides were measured at different temperatures using volumetric method. The effect of Al substitution on PCI and thermodynamic properties were studied. The plateau pressure and maximum hydrogen storage capacity decreased with Al content whereas reaction enthalpy increased. The plateau pressure, plateau slope and hysteresis effect was observed more for dynamic PCIs compared to static PCIs. Different mathematical models used for metal hydride-based thermodynamic devices simulation are compared to select suitable model for static and dynamic PCI simulation of MmNi(5)-based hydrides. Few important physical coefficients (partial molar volume, reaction enthalpy, reaction entropy, etc.) useful for development of thermodynamic devices were estimated. A relation has been proposed to correlate aluminium content and physical coefficients for the prediction of unknown PCI. The simulated and experimental PCIs were found matching closely for both static and dynamic conditions. Copyright (C) 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Random changes in the alkyl substitution patterns of fluorescent dyes, e.g. BODIPYs, are often accompanied by significant changes in their photophysical properties. To understand such alterations in properties in closely related molecular systems, a comparative DFT (density functional theory) computational investigation was performed in order to comprehend the effects of alkyl substitution in controlling the structural and electronic nature of BODIPY dyes. In this context, a systematic strategy was utilized, considering all possible outcomes of constitutionally-isomeric molecules to understand the alkyl groups' effects on the BODIPY molecules. Four different computational methods {i.e. B3LYP/631G(d); B3LYP/6-311++ G(d,p); wb97xd/6-311++ G(d,p) and mpw1pw91/6-311++ G(d,p)} were employed to rationalize the agreement of the trends associated with the molecular properties. In line with experimental observations, it was found that alkyl substituents in BODIPY dyes situated at 3/5-positions effectively participate in stabilization as well as planarization of such molecules. Screening of all the possible isomeric molecular systems was used to understand the individual properties and overall effects of the typical alkyl substituents in controlling several basic properties of such BODIPY molecules.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Severe sepsis or septic shock is one of the rising causes for mortality worldwide representing nearly 10% of intensive care unit admissions. Susceptibility to sepsis is identified to be mediated by innate pattern recognition receptors and responsive signaling pathways of the host. The c-Jun N-terminal Kinase (JNK)-mediated signaling events play critical role in bacterial infection triggered multi-organ failure, cardiac dysfunction and mortality. In the context of kinase specificities, an extensive library of anthrapyrazolone analogues has been investigated for the selective inhibition of c-JNK and thereby to gain control over the inflammation associated risks. In our comprehensive biochemical characterization, it is observed that alkyl and halogen substitution on the periphery of anthrapyrazolone increases the binding potency of the inhibitors specifically towards JNK. Further, it is demonstrated that hydrophobic and hydrophilic interactions generated by these small molecules effectively block endotoxin-induced inflammatory genes expression in in vitro and septic shock in vivo, in a mouse model, with remarkable efficacies. Altogether, the obtained results rationalize the significance of the diversity oriented synthesis of small molecules for selective inhibition of JNK and their potential in the treatment of severe sepsis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recently, research in copper based quaternary chalcogenide materials has focused on the study of thermoelectric properties due to the complexity in the crystal structure. In the present work, stoichiometric quaternary chalcogenide compounds Cu2+xCd1-x,GeSe4 (x = 0, 0.025, 0.05, 0.075, 0.1, 0.125) were prepared by solid state synthesis. The powder X-ray diffraction patterns of all the samples showed a tetragonal crystal structure with the space group I-42m of the main phase, whereas the samples with x = 0 and x = 0.025 revealed the presence of an orthorhombic phase in addition to the main phase as confirmed by Rietveld analysis. The elemental composition of all the samples characterized by Electron Probe Micro Analyzer showed a slight deviation from the nominal composition. The transport properties were measured in the temperature range of 300 K-723 K. The electrical conductivity of all the samples increased with increasing Cu content due to the enhancement of the hole concentration caused by the substitution of Cd (divalent) by Cu (monovalent). The positive Seebeck coefficient of all the samples in the entire temperature ranges indicates that holes are the majority carriers. The Seebeck coefficient of all the samples decreased with increasing Cu content and showed a reverse trend to the electrical conductivity. The total thermal conductivity of all the samples decreased with increasing temperature which was dominated by the lattice contribution. The maximum figure of merit ZT = 0.42 at 723 K was obtained for the compound Cu2.1Cd0.9GeSe4. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tetrahedrite compounds Cu12-xMnxSb4S13 (0 <= x <= 1.8) were prepared by solid state synthesis. A detailed crystal structure analysis of Cu10.6Mn1.4Sb4S13 was performed by single crystal X-ray diffraction (XRD) at 100, 200 and 300 K confirming the noncentrosymmetric structure (space group I (4) over bar 3m) of a tetrahedrite. The large atomic displacement parameter of the Cu2 atoms was described by splitting the 12e site into a partially and randomly occupied 24g site (Cu22) in addition to the regular 12e site (Cu21), suggesting a mix of dynamic and static off-plane Cu2 atom disorder. Rietveld powder XRD pattern and electron probe microanalysis revealed that all the Mn substituted samples showed a single tetrahedrite phase. The electrical resistivity increased with increasing Mn due to substitution of Mn2+ at the Cu1+ site. The positive Seebeck coefficient for all samples indicates that the dominant carriers are holes. Even though the thermal conductivity decreased as a function of increasing Mn, the thermoelectric figure of merit ZT decreased, because the decrease of the power factor is stronger than the decrease of the thermal conductivity. The maximum ZT = 0.76 at 623 K is obtained for Cu12Sb4S13. The coefficient of thermal expansion 13.5 +/- 0.1 x 10(-6) K-1 is obtained in the temperature range from 460 K to 670 K for Cu10.2Mn1.8Sb4S13. The Debye temperature, Theta(D) = 244 K for Cu10.2Mn1.8Sb4S13, was estimated from an evaluation of the elastic properties. The effective paramagnetic moment 7.45 mu(B)/f.u. for Cu10.2Mn1.8Sb4S13 is fairly consistent with a high spin 3d(5) ground state of Mn.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Jacalin is among the most thoroughly studied lectins. Its carbohydrate-binding site has also been well characterized. It has been postulated that the lower affinity of beta-galactosides for jacalin compared with beta-galactosides is caused by steric interactions of the substituents in the former with the protein. This issue has been explored energetically and structurally using different appropriate carbohydrate complexes of jacalin. It turns out that the earlier postulation is not correct. The interactions of the substituent with the binding site remain essentially the same irrespective of the anomeric nature of the substitution. This is achieved through a distortion of the sugar ring in beta-galactosides. The difference in energy, and therefore in affinity, is caused by a distortion of the sugar ring in beta-galactosides. The elucidation of this unprecedented distortion of the ligand as a strategy for modulating affinity is of general interest. The crystal structures also provide a rationale for the relative affinities of the different carbohydrate ligands for jacalin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper investigates the instantaneous spatial higher pair to lower pair substitute-connection which is kinematically equivalent up to acceleration analysis for two smooth surfaces in point contact. The existing first-order equivalent substitute-connection consisting of a Hooke's joint (U-joint) and a spherical joint (S-joint) connected by an additional link is extended up to second-order. A two step procedure is chalked out for achieving this equivalence. First, the existing method is employed for velocity equivalence. In the second step, the two centers of substitution are obtained as a conjugate relationship involving the principal normal curvatures of the surfaces at the contact point and the screw coordinates of the instantaneous screw axis (ISA) of the first-order relative motion. Unlike the classical planar replacement, this particular substitution cannot be done by merely examining the profiles of the contacting surfaces. An illustrative example of a three-link direct-contact mechanism is presented. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report structural, magnetic, and dielectric properties of the perovskite compound Pr1-xYxMnO3 (0.1 <= x <= 0.4) studied using dc magnetization, ac susceptibility, neutron powder diffraction, and dielectric techniques. These compounds crystallize in orthorhombic space group (Pnma) in the temperature range 5-300 K. The Mn-O-Mn bond angle decreases with the Y substitution along with an increase in the Jahn-Teller distortion. The Jahn-Teller distortion for Pr0.9Y0.1MnO3 shows an anomalous change near 50 K, below which it falls sharply. Neutron powder diffraction patterns of all reported compositions at low temperature constitute additional magnetic Bragg peaks that suggest magnetic ordering. Magnetic reflections were indexed in the nuclear lattice with the propagation vector k = (0, 0, 0). Rietveld refinement of powder patterns conform to A type antiferromagnetic ordering where moments are aligned ferromagnetically in a-c plane and coupled nearly antiferromagnetically along b-axis resulting in a net ferromagnetic component along the b-direction. The antiferromagnetic transition temperature was deduced from dc magnetization and ac susceptibility data. The transition temperature decreases by nearly 22 K (from 81 K to 59 K) as yttrium content (x) increases from 0.1 to 0.4. Measurements reveal strong frequency dispersion in dielectric constant and dielectric loss. Activation energy and relaxation time are estimated from the Arrhenius plot. It is further shown that relaxation behaviour is altered with yttrium doping concentration. (C) 2015 AIP Publishing LLC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Calcineurin-like metallophosphoesterases (MPEs) form a large superfamily of binuclear metal-ion-centre-containing enzymes that hydrolyse phosphomono-, phosphodi-or phosphotri-esters in a metal-dependent manner. The MPE domain is found in Mre11/SbcD DNA-repair enzymes, mammalian phosphoprotein phosphatases, acid sphingomyelinases, purple acid phosphatases, nucleotidases and bacterial cyclic nucleotide phosphodiesterases. Despite this functional diversity, MPEs show a remarkably similar structural fold and active-site architecture. In the present review, we summarize the available structural, biochemical and functional information on these proteins. We also describe how diversification and specialization of the core MPE fold in various MPEs is achieved by amino acid substitution in their active sites, metal ions and regulatory effects of accessory domains. Finally, we discuss emerging roles of these proteins as non-catalytic protein-interaction scaffolds. Thus we view the MPE superfamily as a set of proteins with a highly conserved structural core that allows embellishment to result in dramatic and niche-specific diversification of function.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lead tin telluride is one of the well-established thermoelectric materials in the temperature range 350-750 K. In the present study, Pb0.75-xMnxSn0.25Te1.00 alloys with variable manganese (Mn) content were prepared by solid state synthesis and the thermoelectric properties were studied. X-ray diffraction, (XRD) showed that the samples followed Vegard's law, indicating solid solution formation and substitution of Mn at the Pb site. Scanning Electron Microscopy (SEM) showed that the grain sizes varied from <1 mu m to more than 10 mu m and MnTe rich phase was present for higher Mn content. Seebeck coefficient, electrical resistivity and thermal conductivity were measured from room temperature to 720 K. At 300 K, large Seebeck values were obtained, possibly due to increased effective mass on Mn substitution and low carrier concentration of the samples. At higher temperatures, transition from n-type to p-type indicated the presence of thermally generated carriers. Temperature dependent electrical resistivity showed the transition from degenerate to non-degenerate behavior. For thermal conductivity, low values (similar to 1 W/m-K at 300 K) were obtained. At higher temperatures bipolar conduction was observed, in agreement with the Seebeck and resistivity data. Due to low power factor, the maximum thermoelectric figure of merit (zT) was limited to 0.23 at 329 K for the sample with lowest Mn content (x=0.03). (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In last 40 years, CeO2 has been found to play a major role in the area of auto exhaust catalysis due to its unique redox properties. Catalytic activity is enhanced when CeO2 is added to the noble metals supported Al2O3 catalysts. Reason for increase in catalytic activity is due to higher dispersion of noble metals in the form of ions in CeO2. This has led to the idea of substitution of noble metal ions in CeO2 lattice acting as adsorption sites instead of nanocrystalline noble metal particles on CeO2. In this article, a brief review of synthesis, structure and catalytic properties of noble metal ions dispersed on CeO2 resulting in noble metal ionic catalysts (NMIC) like Ce1-xMxO2-delta, Ce1-x-yTixMyO2-delta, Ce1-x-yZrxMyO2-delta, Ce1-x-ySnxMyO2-delta and Ce1-x-yFexMyO2-delta (M = Pt, Pd, Rh and Ru) are presented. Substitution of Ti, Zr, Sn and Fe in CeO2 increases oxygen storage capacities (OSC) due to structural distortion, whereas dispersion of noble metal ions in Ti, Zr, Sn and Fe substituted CeO2 supports increase both OSC and catalytic activities. Electronic interaction between noble metal ions and CeO2 in NMICs responsible for higher OSC and higher catalytic activities is discussed. (C) 2015 Published by Elsevier B.V.