932 resultados para Subgrid Scale Model
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
There are strong uncertainties regarding LAI dynamics in forest ecosystems in response to climate change. While empirical growth & yield models (G&YMs) provide good estimations of tree growth at the stand level on a yearly to decennial scale, process-based models (PBMs) use LAI dynamics as a key variable for enabling the accurate prediction of tree growth over short time scales. Bridging the gap between PBMs and G&YMs could improve the prediction of forest growth and, therefore, carbon, water and nutrient fluxes by combining modeling approaches at the stand level.Our study aimed to estimate monthly changes of leaf area in response to climate variations from sparse measurements of foliage area and biomass. A leaf population probabilistic model (SLCD) was designed to simulate foliage renewal. The leaf population was distributed in monthly cohorts, and the total population size was limited depending on forest age and productivity. Foliage dynamics were driven by a foliation function and the probabilities ruling leaf aging or fall. Their formulation depends on the forest environment.The model was applied to three tree species growing under contrasting climates and soil types. In tropical Brazilian evergreen broadleaf eucalypt plantations, the phenology was described using 8 parameters. A multi-objective evolutionary algorithm method (MOEA) was used to fit the model parameters on litterfall and LAI data over an entire stand rotation. Field measurements from a second eucalypt stand were used to validate the model. Seasonal LAI changes were accurately rendered for both sites (R-2 = 0.898 adjustment, R-2 = 0.698 validation). Litterfall production was correctly simulated (R-2 = 0.562, R-2 = 0.4018 validation) and may be improved by using additional validation data in future work. In two French temperate deciduous forests (beech and oak), we adapted phenological sub-modules of the CASTANEA model to simulate canopy dynamics, and SLCD was validated using LAI measurements. The phenological patterns were simulated with good accuracy in the two cases studied. However, IA/max was not accurately simulated in the beech forest, and further improvement is required.Our probabilistic approach is expected to contribute to improving predictions of LAI dynamics. The model formalism is general and suitable to broadleaf forests for a large range of ecological conditions. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Prostate cancer is a serious public health problem accounting for up to 30% of clinical tumors in men. The diagnosis of this disease is made with clinical, laboratorial and radiological exams, which may indicate the need for transrectal biopsy. Prostate biopsies are discerningly evaluated by pathologists in an attempt to determine the most appropriate conduct. This paper presents a set of techniques for identifying and quantifying regions of interest in prostatic images. Analyses were performed using multi-scale lacunarity and distinct classification methods: decision tree, support vector machine and polynomial classifier. The performance evaluation measures were based on area under the receiver operating characteristic curve (AUC). The most appropriate region for distinguishing the different tissues (normal, hyperplastic and neoplasic) was defined: the corresponding lacunarity values and a rule's model were obtained considering combinations commonly explored by specialists in clinical practice. The best discriminative values (AUC) were 0.906, 0.891 and 0.859 between neoplasic versus normal, neoplasic versus hyperplastic and hyperplastic versus normal groups, respectively. The proposed protocol offers the advantage of making the findings comprehensible to pathologists. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Aim: To estimate the reliability and validity of the Dental Anxiety Scale (DAS) and identify the prevalence and the effect of the socio-demographic characteristics of dental anxiety, in a sample of 212 adults. Methods: The psychometric sensitivity of the scale was assessed. A confirmatory factor analysis was performed, and the convergent validity and internal consistency were determined. The prevalence of anxiety was estimated, and the effect of socio-demographic variables on anxiety was assessed using structural equation modelling. Results: The participants’ mean age was 33.5 (SD = 15.6) years, and 62.3% were female. There was an adequate factorial adjustment of the scale in this sample. The convergent validity and internal consistency were adequate in the one-factor model. Regarding two-factor model, there was a high correlation (r) among the factors, which jeopardized the discriminant validity. A total of 47.6% of the participants (IC95% = 40.9 - 54.4) presented low levels of anxiety, 32.5% (IC95% = 26.2 - 38.9) moderate levels, and 12.3% (IC95% = 7.8 - 16.7) exacerbated levels. There was a non-significant effect of gender, age and education on the anxiety levels of this sample. Conclusion: We concluded that the one-factor model presented better psychometric qualities, that anxiety was highly prevalent and there was no significant effect of the demographic variables on anxiety, in this sample
Resumo:
In situ megascale hydraulic diffusivities (D) of a confined loess aquifer were estimated at various scales (10 <= L <= 1500 m) by a finite difference model, and laboratory microscale diffusivities of a loess sample by empirical formulas. A scatter plot reveals that D fits to a single power function of L, providing that microscale diffusivities are assigned to L = 1 m and that differences in diffusivity observed between micro- and megascales are assigned to medium heterogeneity appraised by variations in the curvature and slope of natural hydraulic head waves propagating through the aquifer. Subsequently, a general power relationship between D and L is defined where the base and exponent terms stand for the aquifer storage capability under a confined regime of flow, for the microscale hydraulic conductivity and specific yield of loess, and for the changes in curvature and slope of hydraulic head waves relative to values defined at unit scale.[GRAPHICS]Editor Z.W. Kundzewicz
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The south of Minas Gerais, Brazil stands out among various regions through its capacity for production of specialty coffees. Its potential, manifested through being one of the most award-winning Brazilian regions in recent years, has been recognized by the Cup of Excellence (COE). With the evident relationship between product quality and the environment in mind, the need arises for scientific studies to provide a foundation for discrimination of product origin, creating new methods for combating possible fraud. The aim of this study was to evaluate the use of carbon and nitrogen isotopes in discrimination of production environments of specialty coffees from the Serra da Mantiqueira of Minas Gerais by means of the discriminant model. Coffee samples were composed of ripe yellow and red fruits collected manually at altitudes below 1,000 m, from 1,000 to 1,200 m and above 1,200 m. The yellow and red fruits were subjected to dry processing and wet processing, with five replications. A total of 119 samples were used for discrimination of specialty coffee production environments by means of stable isotopes and statistical modeling. The model generated had an accuracy rate of 89% in discrimination of environments and was composed of the isotope variables of δ15N, δ13C, %C, %N, δD, δ18O (meteoric water) and sensory analysis scores. In addition, for the first time, discrimination of environments on a local geographic scale, within a single municipality, was proposed and successfully concluded. This shows that isotope analysis is an effective method in verifying geographic origin for specialty coffees.
Resumo:
Composites are engineered materials that take advantage of the particular properties of each of its two or more constituents. They are designed to be stronger, lighter and to last longer which can lead to the creation of safer protection gear, more fuel efficient transportation methods and more affordable materials, among other examples. This thesis proposes a numerical and analytical verification of an in-house developed multiscale model for predicting the mechanical behavior of composite materials with various configurations subjected to impact loading. This verification is done by comparing the results obtained with analytical and numerical solutions with the results found when using the model. The model takes into account the heterogeneity of the materials that can only be noticed at smaller length scales, based on the fundamental structural properties of each of the composite’s constituents. This model can potentially reduce or eliminate the need of costly and time consuming experiments that are necessary for material characterization since it relies strictly upon the fundamental structural properties of each of the composite’s constituents. The results from simulations using the multiscale model were compared against results from direct simulations using over-killed meshes, which considered all heterogeneities explicitly in the global scale, indicating that the model is an accurate and fast tool to model composites under impact loads. Advisor: David H. Allen
Resumo:
Evaluations of measurement invariance provide essential construct validity evidence. However, the quality of such evidence is partly dependent upon the validity of the resulting statistical conclusions. The presence of Type I or Type II errors can render measurement invariance conclusions meaningless. The purpose of this study was to determine the effects of categorization and censoring on the behavior of the chi-square/likelihood ratio test statistic and two alternative fit indices (CFI and RMSEA) under the context of evaluating measurement invariance. Monte Carlo simulation was used to examine Type I error and power rates for the (a) overall test statistic/fit indices, and (b) change in test statistic/fit indices. Data were generated according to a multiple-group single-factor CFA model across 40 conditions that varied by sample size, strength of item factor loadings, and categorization thresholds. Seven different combinations of model estimators (ML, Yuan-Bentler scaled ML, and WLSMV) and specified measurement scales (continuous, censored, and categorical) were used to analyze each of the simulation conditions. As hypothesized, non-normality increased Type I error rates for the continuous scale of measurement and did not affect error rates for the categorical scale of measurement. Maximum likelihood estimation combined with a categorical scale of measurement resulted in more correct statistical conclusions than the other analysis combinations. For the continuous and censored scales of measurement, the Yuan-Bentler scaled ML resulted in more correct conclusions than normal-theory ML. The censored measurement scale did not offer any advantages over the continuous measurement scale. Comparing across fit statistics and indices, the chi-square-based test statistics were preferred over the alternative fit indices, and ΔRMSEA was preferred over ΔCFI. Results from this study should be used to inform the modeling decisions of applied researchers. However, no single analysis combination can be recommended for all situations. Therefore, it is essential that researchers consider the context and purpose of their analyses.
Resumo:
Stage-structured population models predict transient population dynamics if the population deviates from the stable stage distribution. Ecologists’ interest in transient dynamics is growing because populations regularly deviate from the stable stage distribution, which can lead to transient dynamics that differ significantly from the stable stage dynamics. Because the structure of a population matrix (i.e., the number of life-history stages) can influence the predicted scale of the deviation, we explored the effect of matrix size on predicted transient dynamics and the resulting amplification of population size. First, we experimentally measured the transition rates between the different life-history stages and the adult fecundity and survival of the aphid, Acythosiphon pisum. Second, we used these data to parameterize models with different numbers of stages. Third, we compared model predictions with empirically measured transient population growth following the introduction of a single adult aphid. We find that the models with the largest number of life-history stages predicted the largest transient population growth rates, but in all models there was a considerable discrepancy between predicted and empirically measured transient peaks and a dramatic underestimation of final population sizes. For instance, the mean population size after 20 days was 2394 aphids compared to the highest predicted population size of 531 aphids; the predicted asymptotic growth rate (λmax) was consistent with the experiments. Possible explanations for this discrepancy are discussed. Includes 4 supplemental files.