977 resultados para Subcellular phenotype
Resumo:
In this work we review recent findings that explain how mitochondrial bioenergetic functions and redox state respond to a hyperlipidemic in vivo environment and may contribute to the maintenance of a normal metabolic phenotype. The experimental model utilized to evidence these adaptive mechanisms is especially useful for these studies since it exhibits genetic hypertriglyceridemia and avoids complications introduced by high fat diets. Liver from hypertrigliceridemic (HTG) mice have a greater content of glycerolipids together with increased mitochondrial free fatty acid oxidation. HTG liver mitochondria have a higher resting respiration rate but normal oxidative phosphorylation efficiency. This is achieved by higher activity of the mitochondrial potassium channel sensitive to ATP (mitoK(ATP)). The mild uncoupling mediated by mitoK(ATP) accelerates respiration rates and reduces reactive oxygen species generation. Although this response is not sufficient to inhibit lipid induced extra-mitochondrial oxidative stress in whole liver cells it avoids amplification of this redox imbalance. Furthermore, higher mitoK(ATP) activity increases liver, brain and whole body metabolic rates. These mitochondrial adaptations may explain why these HTG mice do not develop insulin resistance and obesity even under a severe hyperlipidemic state. On the contrary, when long term high fat diets are employed, insulin resistance, fatty liver and obesity develop and mitochondrial adaptations are inefficient to counteract energy and redox imbalances.
Resumo:
P>Carbon dioxide (CO(2)) and its hydration product bicarbonate (HCO(3)-) are essential molecules in various physiological processes of all living organisms. The reversible interconversion between CO(2) and HCO(3)- is in equilibrium. This reaction is slow without catalyst, but can be rapidly facilitated by Zn2+-metalloenzymes named carbonic anhydrases (CAs). To gain an insight into the function of multiple clades of fungal CA, we chose to investigate the filamentous fungi Aspergillus fumigatus and A. nidulans. We identified four and two CAs in A. fumigatus and A. nidulans, respectively, named cafA-D and canA-B. The cafA and cafB genes are constitutively, strongly expressed whereas cafC and cafD genes are weakly expressed but CO(2)-inducible. Heterologous expression of the A. fumigatus cafB, and A. nidulans canA and canB genes completely rescued the high CO(2)-requiring phenotype of a Saccharomyces cerevisiae Delta nce103 mutant. Only the Delta cafA Delta cafB and Delta canB deletion mutants were unable to grow at 0.033% CO(2), of which growth defects can be restored by high CO(2). Defects in the CAs can affect Aspergilli conidiation. Furthermore, A. fumigatus Delta cafA, Delta cafB, Delta cafC, Delta cafD and Delta cafA Delta cafB mutant strains are fully virulent in a low-dose murine infection.
Resumo:
Paracoccidioides brasiliensis is characterized by a multiple budding phenotype and a polymorphic cell growth, leading to the formation of cells with extreme variations in shape and size. Since Cdc42 is a pivotal molecule in establishing and maintaining polarized growth for diverse cell types, as well as during pathogenesis of certain fungi, we evaluated its role during cell growth and virulence of the yeast-form of P. brasiliensis. We used antisense technology to knock-down PbCDC42`s expression in P. brasiliensis yeast cells, promoting a decrease in cell size and more homogenous cell growth, altering the typical polymorphism of wild-type cells. Reduced expression levels also lead to increased phagocytosis and decreased virulence in a mouse model of infection. We provide genetic evidences underlying Pbcdc42p as an important protein during host-pathogen interaction and the relevance of the polymorphic nature and cell size in the pathogenesis of P. brasiliensis. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
The aim of this study was to define the immunoregulatory role of prostaglandins in a mouse model of Strongyloides venezuelensis infection. Strongyloides venezuelensis induced an increase of eosinophils and mononuclear cells in the blood, peritoneal cavity fluid, and bronchoalveolar lavage fluid. Treatment with the dual cyclooxygenase (COX-1/-2) inhibitors indomethacin and ibuprofen, and the COX-2-selective inhibitor celecoxib partially blocked these cellular responses and was associated with enhanced numbers of infective larvae in the lung and adult worms in the duodenum. However, the drugs did not interfere with worm fertility. Cyclooxygenase inhibitors also inhibited the production of the T-helper type 2 (Th2) mediators IL-5, IgG1, and IgE, while indomethacin alone also inhibited IL-4, IL-10, and IgG2a. Cyclooxygenase inhibitors tended to enhance the Th1 mediators IL-12 and IFN-gamma. This shift away from Th2 immunity in cyclooxygenase inhibitor-treated mice correlated with reduced prostaglandin E(2) (PGE(2)) production in infected duodenal tissue. As PGE(2) is a well-characterized driver of Th2 immunity, we speculate that reduced production of this lipid might be involved in the shift toward a Th1 phenotype, favoring parasitism by S. venezuelensis. These findings provide new evidence that cyclooxygenase-derived lipids play a role in regulating host defenses against Strongyloides, and support the exploration of eicosanoid signaling for identifying novel preventive and therapeutic modalities against these infections.
Resumo:
Inosine triphosphate pyrophosphohydrolase (ITPase) deficiency is a common inherited condition characterized by the abnormal accumulation of inosine triphosphate (ITP) in erythrocytes. The genetic basis and pathological consequences of ITPase deficiency are unknown. We have characterized the genomic structure of the ITPA gene, showing that it has eight exons. Five single nucleotide polymorphisms were identified, three silent (138GMA, 561GMA, 708GMA) and two associated with ITPase deficiency (94CMA, IVS2+21AMC). Homozygotes for the 94CMA missense mutation (Pro32 to Thr) had zero erythrocyte ITPase activity, whereas 94CMA heterozygotes averaged 22.5% of the control mean, a level of activity consistent with impaired subunit association of a dimeric enzyme. ITPase activity of IVS2+21AMC homozygotes averaged 60% of the control mean. In order to explore further the relationship between mutations and enzyme activity, we examined the association between genotype and ITPase activity in 100 healthy controls. Ten subjects were heterozygous for 94CMA (allele frequency: 0.06), 24 were heterozygotes for IVS2+21AMC (allele frequency: 0.13) and two were compound heterozygous for these mutations. The activities of IVS2+21AMC heterozygotes and 94CMA/IVS2+21AMC compound heterozygotes were 60% and 10%, respectively, of the normal control mean, suggesting that the intron mutation affects enzyme activity. In all cases when ITPase activity was below the normal range, one or both mutations were found. The ITPA genotype did not correspond to any identifiable red cell phenotype. A possible relationship between ITPase deficiency and increased drug toxicity of purine analogue drugs is proposed.
Resumo:
A virulent strain of Wolbachia has recently been identified in Drosophila that drastically reduces adult lifespan. It has been proposed that this phenotype might be introduced into insect disease vector populations to reduce pathogen transmission. Here we model the requirements for spread of such an agent and the associated reduction in disease transmission. First, a simulation of mosquito population age structure was used to describe the age distribution of mosquitoes transmitting dengue virus. Second, given varying levels of cytoplasmic incompatibility and fecundity effect, the maximum possible longevity reduction that would allow Wolbachia to invade was obtained. Finally, the two models were combined to estimate the reduction in disease transmission according to different introduction frequencies. With strong CI and limited effect of fecundity, an introduction of Wolbachia with an initial frequency of 0.4 could result in a 60–80% reduction of transmitting mosquitoes. Greater reductions are possible at higher initial release rates.
Resumo:
The maternally inherited intracellular symbiont Wolbachia pipientis is well known for inducing a variety of reproductive abnormalities in the diverse arthropod hosts it infects. It has been implicated in causing cytoplasmic incompatibility, parthenogenesis, and the feminization of genetic males in different hosts. The molecular mechanisms by which this fastidious intracellular bacterium causes these reproductive and developmental abnormalities have not yet been determined. In this paper, we report on (i) the purification of one of the most abundantly expressed Wolbachia proteins from infected Drosophila eggs and (ii) the subsequent cloning and characterization of the gene (wsp) that encodes it. The functionality of the wsp promoter region was also successfully tested in Escherichia coli. Comparison of sequences of this gene from different strains of Wolbachia revealed a high level of variability. This sequence variation correlated with the ability of certain Wolbachia strains to induce or rescue the cytoplasmic incompatibility phenotype in infected insects. As such, this gene will be a very useful tool for Wolbachia strain typing and phylogenetic analysis, as well as understanding the molecular basis of the interaction of Wolbachia with its host.
Resumo:
Intracellular Wolbachia infections are extremely common in arthropods and exert profound control over the reproductive biology of the host. However, very little is known about the underlying molecular mechanisms which mediate these interactions with the host. We examined protein synthesis by Wolbachia in a Drosophila host in vivo by selective metabolic labelling of prokaryotic proteins and subsequent analysis by 1D and 2D gel electrophoresis. Using this method we could identify the major proteins synthesized by Wolbachia in ovaries and testes of flies. Of these proteins the most abundant was of low molecular weight and showed size variation between Wolbachia strains which correlated with the reproductive phenotype they generated in flies. Using the gel systems we employed it was not possible to identify any proteins of Wolbachia origin in the mature sperm cells of infected flies.
Resumo:
Various stocks of Drosophila mauritiana and D. sechellia were found to be infected with Wolbachia, a Rickettsia-like bacterium that is known to cause cytoplasmic incompatibility and other reproductive abnormalities in arthropods. Testing for the expression of cytoplasmic incompatibility in these two species showed partial incompatibility in D. sechellia but no expression of incompatibility in D. mauritiana. To determine whether absence of cytoplasmic incompatibility in D. mauritiana was due to either the bacterial or host genome, we transferred bacteria from D. mauritiana into an uninfected strain of D. simulans, a host species known to express high levels of incompatibility with endogenous Wolbachia. We also performed the reciprocal transfer of the natural D. simulans Riverside infection into a tetracycline-treated stock of D. mauritiana. In each case, the ability to express incompatibility was unaltered by the different host genetic background. These experiments indicate that in D. simulans and D. mauritiana expression of the cytoplasmic incompatibility phenotype is determined by the bacterial strain and that D. mauritiana harbors a neutral strain of Wolbachia.
Resumo:
Whole body glucose homeostasis is dependent on the action of insulin. In muscle and adipose tissues, insulin stimulates glucose uptake by inducing the translocation of vesicles containing the glucose transporter GLUT4 to the cell surface. While the mechanisms of insulin-regulated GLUT4 translocation are not fully understood, some signaling intermediates have been implicated in this process. Interestingly, som: of these intermediates, including IRS-1 and PI3K, have been localised to the same intracellular membrane fraction as the GLUT4 storage pool, designated here as the high-speed pellet (HSP) fraction. This raises the possibility that many of the downstream insulin signaling intermediates may be located within close proximity to intracellular GLUT4. The goal of this study was to test this hypothesis in 3T3-L1 adipocytes. A large proportion of adipocyte phosphoproteins co-fractionated in the HSP fraction. In an attempt to resolve insulin-regulatable phosphoproteins, we subjected P-32-labeled subcellular fractions to two-dimensional gel electrophoresis (2-DE). Insulin reproducibly stimulated the phosphorylation of 12 spots in the HSP fraction. Most of the HSP phosphoproteins were insoluble in the nonionic detergent Triton X-100, whereas integral membrane proteins such as GLUT4 and intracellular caveolin were soluble under the same conditions. These results suggest that insulin-regulatable phosphoproteins in adipocytes may be organized in microdomains within the cell and that this assembly may act as an efficient conductor of the signaling proteins to rapidly facilitate downstream biological responses. Further study is required to establish the molecular basis for these detergent-insoluble signaling complexes.
Resumo:
The effect of replacing a single codon in the N-terminal of human aryl sulfotransferase (HAST) 1 and 3 with one that is more commonly found in E. coli genes was assessed. The pKK233-2 E. coli expression vector was employed and the polymerase chain reaction (PCR) was used to introduce the 5' nucleotide substitution, at the same time maintaining the fidelity of the amino acid sequence. The data indicates that this change had a minimal effect on protein production, subcellular localization or, in the case of HAST3, catalytic activity. In general, the pKK233-2 E. coli vector has been less than optimal for expressing human sulfotransferase cDNAs. (C) 1998 Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
DNA mismatch repair is an important mechanism involved in maintaining the fidelity of genomic DNA. Defective DNA mismatch repair is implicated in a variety of gastrointestinal and other turners; however, its role in hepatocellular carcinoma (HCC) has not been assessed. Formalin-fixed, paraffin-embedded archival pathology tissues from 46 primary liver tumors were studied by microdissection and microsatellite analysis of extracted DNA to assess the degree of microsatellite instability, a marker of defective mismatch repair, and to determine the extent and timing of allelic loss of two DNA mismatch repair genes, human Mut S homologue-2 (hMSH2) and human Mut L homologue-1 (hMLH1), and the tumor suppressor genes adenomatous polyposis coli gene (APC), p53, and DPC4. Microsatellite instability was detected in 16 of the tumors (34.8%). Loss of heterozygosity at microsatellites linked to the DNA mismatch repair genes, hMSH2 and/or hMLH1, was found in 9 cases (19.6%), usually in association with microsatellite instability. Importantly, the pattern of allelic loss was uniform in 8 of these 9 tumors, suggesting that clonal loss had occurred. Moreover, loss at these loci also occurred in nonmalignant tissue adjacent to 4 of these tumors, where it was associated with marked allelic heterogeneity. There was relatively infrequent loss of APC, p53, or DPC4 loci that appeared unrelated to loss of hMSH2 or hMLH1 gene loci. Loss of heterozygosity at hMSH2 and/or hMLH1 gene loci, and the associated microsatellite instability in premalignant hepatic tissues suggests a possible causal role in hepatic carcinogenesis in a subset of hepatomas.
Resumo:
To investigate changes in the three-dimensional microfilament architecture of vascular smooth muscle cells (SMC) during the process of phenotypic modulation, rabbit aortic SMCs cultured under different conditions and at different time points were either labelled with fluorescein-conjugated probes to cytoskeletal and contractile proteins for observation by confocal laser scanning microscopy, or extracted with Triton X-100 for scanning electron microscopy. Densely seeded SMCs in primary culture, which maintain a contractile phenotype, display prominent linear myofilament bundles (stress fibres) that are present throughout the cytoplasm with alpha-actin filaments predominant in the central part and beta-actin filaments in the periphery of the cell. Intermediate filaments form a meshed network interconnecting the stress fibres and linking directly to the nucleus. Moderately and sparsely seeded SMCs, which modulate toward the synthetic phenotype during the first 5 days of culture, undergo a gradual redistribution of intermediate filaments from the perinuclear region toward the peripheral cytoplasm and a partial disassembly of stress fibres in the central part of the upper cortex of the cytoplasm, with an obvious decrease in alpha-actin and myosin staining. These changes are reversed in moderately seeded SMCs by day 8 of culture when they have reached confluence. The results reveal two changes in microfilament architecture in SMCs as they undergo a change in phenotype: the redistribution of intermediate filaments probably due to an increase in synthetic organelles in the perinuclear area, and the partial disassembly of stress fibres which may reflect a degradation of contractile components.
Resumo:
The identification of familial forms of primary aldosteronism (PAL) has led to its detection in relatives of affected patients not suspected previously of having PAL. Many ave normokalemic and some ave even normotensive. This broadens the spectrum of PAL, permitting the study of its evolution and of intervention with specific therapy when hypertension develops. The genetic basis of one form involves steroid biosynthetic enzymes and the other form predisposes to hyperplasia and benign neoplasia.
Resumo:
David Hull's (1988c) model of science as a selection process suffers from a two-fold inability: (a) to ascertain when a lineage of theories has been established; i.e., when theories are descendants of older theories or are novelties, and what counts as a distinct lineage; and (b) to specify what the scientific analogue is of genotype and phenotype. This paper seeks to clarify these issues and to propose an abstract model of theories analogous to particulate genetic structure, in order to reconstruct relationships of descent and identity.