910 resultados para Stress degradation studies
Resumo:
This meta-analysis synthesizes the available data on the strength of association between anger and posttraumatic stress disorder (PTSD) and between hostility and PTSD, covering 39 studies with trauma-exposed adults. Effect sizes did not differ for anger and hostility, which could therefore be combined; effect sizes for anger expression variables were analyzed separately. The analyses revealed large effects. The weighted mean effect size (r) was .48 for anger–hostility, .29 for anger out, .53 for anger in, and -.44 for anger control. Moderator analyses were conducted for anger–hostility, showing that effect sizes were substantially larger with increasing time since the event and that effect sizes were larger in samples with military war experience than in samples that had experienced other types of traumatic events.
Resumo:
Accumulation of iron probably predisposes the aging brain to progressive neuronal loss. We examined various markers of oxidative stress and damage in the brain and liver of 3- and 24-month-old rats following supplementation with the lipophilic iron derivative [(3,5,5-trimethylhexanoyl)ferrocene] (TMHF), which is capable of crossing the blood-brain barrier. At both ages, iron concentration increased markedly in the liver but failed to increase in the brain. In the liver of TMHF-treated young rats, levels of alpha- and gamma-tocopherols and glutathione (GSH) were also higher. In contrast, the brain displayed unaltered levels of the tocopherols and GSH. Malondialdehyde (MDA) level was also higher in the cerebrospinal fluid (CSF) and the liver but not in the brain. In old rats, the absence of an increase in iron concentration in the brain was reflected by unaltered concentrations of GSH, tocopherols, and MDA as compared to that in untreated rats. In the aging liver, concentrations of GSH and MDA increased with TMHF treatment. Morphological studies revealed unaltered levels of iron, ferritin, heme oxygenase-1 (HO-1), nitrotyrosine (NT), or MDA in the brains of both young and old rats treated with TMHF. In contrast, TMHF treatment increased the level of HO-1 in Kupffer cells, NT in hepatic endothelial cells, and MDA and ferritin in hepatocytes. Although these results demonstrated an increase in the biochemical markers of oxidative stress and damage in response to increasing concentrations of iron in the liver, they also demonstrated that the brain is well protected against dietary iron overload by using iron in a lipid-soluble formulation.
Resumo:
Polymer electrolyte fuel cell (PEMFC) is promising source of clean power in many applications ranging from portable electronics to automotive and land-based power generation. However, widespread commercialization of PEMFC is primarily challenged by degradation. The mechanisms of fuel cell degradation are not well understood. Even though the numbers of installed units around the world continue to increase and dominate the pre-markets, the present lifetime requirements for fuel cells cannot be guarantee, creating the need for a more comprehensive knowledge of material’s ageing mechanism. The objective of this project is to conduct experiments on membrane electrode assembly (MEA) components of PEMFC to study structural, mechanical, electrical and chemical changes during ageing and understanding failure/degradation mechanism. The first part of this project was devoted to surface roughness analysis on catalyst layer (CL) and gas diffusion layer (GDL) using surface mapping microscopy. This study was motivated by the need to have a quantitative understanding of the GDL and CL surface morphology at the submicron level to predict interfacial contact resistance. Nanoindentation studies using atomic force microscope (AFM) were introduced to investigate the effect of degradation on mechanical properties of CL. The elastic modulus was decreased by 45 % in end of life (EOL) CL as compare to beginning of life (BOL) CL. In another set of experiment, conductive AFM (cAFM) was used to probe the local electric current in CL. The conductivity drops by 62 % in EOL CL. The future task will include characterization of MEA degradation using Raman and Fourier transform infrared (FTIR) spectroscopy. Raman spectroscopy will help to detect degree of structural disorder in CL during degradation. FTIR will help to study the effect of CO in CL. XRD will be used to determine Pt particle size and its crystallinity. In-situ conductive AFM studies using electrochemical cell on CL to correlate its structure with oxygen reduction reaction (ORR) reactivity
Resumo:
Hypertension is the most prevalent form of cardiovascular disease (CVD) in the world, and is known to increase the risk for developing other diseases. Recently, the American Heart Association introduced a new classification of blood pressure, prehypertension (PHT). The criteria for PHT include a systolic of 120-139 mmHg and/or a diastolic blood pressure of 80-89 mmHg. It has been observed that individuals with PHT have a higher risk of developing hypertension later in life. Therefore, it is important to understand the mechanisms contributing to PHT in order to possibly prevent hypertension. Omega-3 fatty acids found in fish oils have been suggested as a means of lowering blood pressure. However, little is known on the effects of fish oil in PHT humans. Therefore we conducted two studies. In Study 1 we investigated PHT and normotensive (NT) individuals during a mental stress task. Mental stress is known to contribute to the development of hypertension. In Study 2 PHT and NT subjects were placed in an eight week double-blind placebo controlled study in which subjects consumed 9g/day of either fish oil or placebo (olive oil) in addition to their regular diets. Subjects were tested during a resting baseline (seated and supine), 5 minutes of a mental stress task, and 5 minutes of recovery both pre and post supplementation. We measured arterial pressure (AP), heart rate (HR), muscle sympathetic nerve activity (MSNA), and forearm and calf vascular responses. In Study 1 PHT demonstrated augmented AP and blunted vasodilation during mental stress, but MSNA did not change. In Study 2, fish oil did not directly influence blood pressure, MSNA or vascular responses to mental stress. However, it became clear that fish oil had an effect on some but not all subjects (both PHT and NT). Specifically, subjects who experienced a reduced blood pressure response to fish oil also demonstrated a decrease in MSNA and HR during mental stress. Collectively, the investigations in this dissertation had several novel findings. First, PHT individuals demonstrate an augmented pressor and blunted vascular response to mental stress, a response that may be contributing to the development of hypertension. Second, fish oil does not consistently lower resting blood pressure, but the interindividual responses may be related to MSNA. Third, fish oil attenuated the heart rate and MSNA responses and to mental stress in both PHT and NT. In conclusion, we found that there are both similarities and differences in the way PHT and NT individuals respond to mental stress and fish oil.
Resumo:
Recent epidemiological studies report a consistent association between short sleep and incidence of hypertension, as well as short sleep and cardiovascular disease-related mortality. While the association between short sleep and hypertension appears to be stronger in women than men, the mechanisms underlying the relations between sleep deprivation, stress, risks of cardiovascular diseases, and sex remain unclear. We conducted two studies to investigate the underlying neural mechanisms of these relations. In study 1, we examined sympathetic neural and blood pressure responses to experimentally-induced sleep deprivation in men and women. We further investigated the influence of sleep deprivation on cardiovascular reactivity to acute stress. In study 2, we examined the neural and cardiovascular function throughout the ovarian cycle in sleep deprived women. Twenty-eight young healthy subjects (14men and 14 women) were tested twice in study 1, once after normal sleep (NS) and once after 24-h total sleep deprivation (TSD). We measured the blood pressure, heart rate (HR), muscle sympathetic nerve activity (MSNA) and forearm blood flow (FBF) during 10min baseline, 5min of mental stress (MS) and 2 min cold pressor test (CPT). We demonstrated that TSD increased resting arterial blood pressure to a similar extent in both men and women, but MSNA decreased only in men following TSD. This MSNA response was associated with altered baroreflex function in women and divergent testosterone responses to TSD between men and women. Regarding TSD and cardiovascular reactivity, TSD elicited augmented HR reactivity and delayed recovery during both MS and CPT in men and women, and responses between sexes were not statistically different. Fourteen young healthy women participated in study 2. Subjects were tested twice, once during their early follicular (EF) phase after TSD, once during their mid-luteal (ML) phase after TSD. Blood pressure, HR, MSNA, and FBF were recorded during 10min baseline, 5 min MS, and 2 min CPT. We observed an augmented resting supine blood pressure during EF compared to ML in sleep deprived women. In contrast, resting MSNA, as well as cardiovascular responses to stressors, were similar between EF and ML after TSD. In conclusion, we observed sex differences in MSNA responses to TSD that demonstrate reductions of MSNA in men, but not women. TSD elicited augmented HR reactivity and delayed HR recovery to acute stressors similarly in men and women. We also reported an augmented supine blood pressure during EF compared to ML in sleep deprived women. These novel findings provide new and valuable mechanistic insight regarding the complex and poorly understood relations among sleep deprivation, sex, stress, and risk of cardiovascular disease.
Resumo:
Large earthquakes may strongly influence the activity of volcanoes through static and dynamic processes. In this study, we quantify the static and dynamic stress change on 27 volcanoes in Central America, after the Mw 7.6 Costa Rica earthquake of 5 September 2012. Following this event, 8 volcanoes showed signs of activity. We calculated the static stress change due to the earthquake on hypothetical faults under these volcanoes with Coulomb 3.3. For the dynamic stress change, we computed synthetic seismograms to simulate the waveforms at these volcanoes. We then calculated the Peak Dynamic Stress (PDS) from the modeled peak ground velocities. The resulting values are from moderate to minor changes in stress (10-1-10-2 MPa) with the PDS values generally an order of magnitude larger than the static stress change. Although these values are small, they may be enough to trigger a response by the volcanoes, and are on the order of stress changes implicated in many other studies of volcano and earthquake triggering by large earthquakes. This study provides insight into the poorly-constrained mechanism for remote triggering.
Resumo:
Water management in the porous media of proton exchange membrane (PEM) fuel cells, catalyst layer and porous transport layers (PTL) is confronted by two issues, flooding and dry out, both of which result in improper functioning of the fuel cell and lead to poor performance and degradation. The data that has been reported about water percolation and wettability within a fuel cell catalyst layer is limited to porosimetry. A new method and apparatus for measuring the percolation pressure in the catalyst layer has been developed. The experimental setup is similar to a Hele-Shaw experiment where samples are compressed and a fluid is injected into the sample. Pressure-Wetted Volume plots as well as Permeability plots for the catalyst layers were generated from the percolation testing. PTL samples were also characterizes using a Hele-Shaw method. Characterization for the PTLs was completed for the three states: new, conditioned and aged. This is represented in a Ce-t* plots, which show a large offset between new and aged samples.
Resumo:
Important food crops like rice are constantly exposed to various stresses that can have devastating effect on their survival and productivity. Being sessile, these highly evolved organisms have developed elaborate molecular machineries to sense a mixture of stress signals and elicit a precise response to minimize the damage. However, recent discoveries revealed that the interplay of these stress regulatory and signaling molecules is highly complex and remains largely unknown. In this work, we conducted large scale analysis of differential gene expression using advanced computational methods to dissect regulation of stress response which is at the heart of all molecular changes leading to the observed phenotypic susceptibility. One of the most important stress conditions in terms of loss of productivity is drought. We performed genomic and proteomic analysis of epigenetic and miRNA mechanisms in regulation of drought responsive genes in rice and found subsets of genes with striking properties. Overexpressed genesets included higher number of epigenetic marks, miRNA targets and transcription factors which regulate drought tolerance. On the other hand, underexpressed genesets were poor in above features but were rich in number of metabolic genes with multiple co-expression partners contributing majorly towards drought resistance. Identification and characterization of the patterns exhibited by differentially expressed genes hold key to uncover the synergistic and antagonistic components of the cross talk between stress response mechanisms. We performed meta-analysis on drought and bacterial stresses in rice and Arabidopsis, and identified hundreds of shared genes. We found high level of conservation of gene expression between these stresses. Weighted co-expression network analysis detected two tight clusters of genes made up of master transcription factors and signaling genes showing strikingly opposite expression status. To comprehensively identify the shared stress responsive genes between multiple abiotic and biotic stresses in rice, we performed meta-analyses of microarray studies from seven different abiotic and six biotic stresses separately and found more than thirteen hundred shared stress responsive genes. Various machine learning techniques utilizing these genes classified the stresses into two major classes' namely abiotic and biotic stresses and multiple classes of individual stresses with high accuracy and identified the top genes showing distinct patterns of expression. Functional enrichment and co-expression network analysis revealed the different roles of plant hormones, transcription factors in conserved and non-conserved genesets in regulation of stress response.
Resumo:
A systematic comparison has been performed of the morphology and stability of microtubules (MTs) induced by the potent microtubule-stabilizing agents (MSAs) taxol, epothilone B (Epo B), and discodermolide (DDM) under GTP-free conditions. DDM-induced tubulin polymerization occurred significantly faster than that induced by taxol and Epo B. At the same time, tubulin polymers assembled from soluble tubulin by DDM were morphologically distinct (shorter and less ordered) from those induced by either taxol or Epo B, as demonstrated by electron microscopy. Exposure of MSA-induced tubulin polymers to ultrasound revealed the DDM-based polymers to be less stable to this type of physical stress than those formed with either Epo B or taxol. Interestingly, MT assembly in the presence of both DDM and taxol appeared to produce a distinct new type of MT polymer with a mixed morphology between those of DDM- and taxol-induced structures. The observed differences in MT morphology and stability might be related, at least partly, to differences in intramicrotubular tubulin isotype distribution, as DDM showed a different pattern of beta-tubulin isotype usage in the assembly process.
Resumo:
MicroRNAs (miRNAs) are an abundant class of 20-23-nt long regulators of gene expression. The study of miRNA function in mice and potential therapeutic approaches largely depend on modified oligonucleotides. We recently demonstrated silencing miRNA function in mice using chemically modified and cholesterol-conjugated RNAs termed 'antagomirs'. Here, we further characterize the properties and function of antagomirs in mice. We demonstrate that antagomirs harbor optimized phosphorothioate modifications, require >19-nt length for highest efficiency and can discriminate between single nucleotide mismatches of the targeted miRNA. Degradation of different chemically protected miRNA/antagomir duplexes in mouse livers and localization of antagomirs in a cytosolic compartment that is distinct from processing (P)-bodies indicates a degradation mechanism independent of the RNA interference (RNAi) pathway. Finally, we show that antagomirs, although incapable of silencing miRNAs in the central nervous system (CNS) when injected systemically, efficiently target miRNAs when injected locally into the mouse cortex. Our data further validate the effectiveness of antagomirs in vivo and should facilitate future studies to silence miRNAs for functional analysis and in clinically relevant settings.
Resumo:
Within the Yellowstone National Park, Wyoming, the silicic Yellowstone volcanic field is one of the most active volcanic systems all over the world. Although the last rhyolite eruption occurred around 70,000 years ago, Yellowstone is still believed to be volcanically active, due to high hydrothermal and seismic activity. The earthquake data used in this study cover the period of time between 1988 and 2010. Earthquake relocations and a set of 369 well-constrained, double-couple, focal mechanism solutions were computed. Events were grouped according to location and time to investigate trends in faulting. The majority of the events has oblique, normal-faulting solutions. The overall direction of extension throughout the 0.64 Ma Yellowstone caldera looks nearly ENE, consistently with the direction of alignments of volcanic vents within the caldera, but detailed study revealed spatial and temporal variations. Stress-field solutions for different areas and time periods were calculated from earthquake focal mechanism inversion. A well-resolved rotation of σ3 was found, from NNE-SSW near the Hebgen Lake fault zone, to ENE-WSW near Norris Junction. In particular, the σ3 direction changed throughout the years in the Norris Junction area, from being ENE-WSW, as calculated in the study by Waite and Smith (2004), to NNE-SSW, while the other σ3 directions are mostly unchanged over time. The Yellowstone caldera was subject to periods of net uplift and subsidence over the past century, explained in previous studies as caused by expanding or contracting sills, at different depths. Based on the models used to explain these deformation periods, we investigated the relationship between variability in aseismic deformation and seismic activity and faulting styles. Focal mechanisms and P and T axes were divided into temporal and depth intervals, in order to identify spatial or temporal trends in deformation. The presence of “chocolate tablet” structures, with composite dilational faults, was identified in many stages of the deformation history both in the Norris Geyser Basin area and inside the caldera. Strike-slip component movement was found in a depth interval below a contracting sill, indicating the movement of magma towards the caldera.
Resumo:
BACKGROUND: Clinician-rated large-scale studies estimating the prevalence of posttraumatic stress disorder (PTSD) related to myocardial infarction (MI) and identifying predictors of clinical PTSD are currently lacking. HYPOTHESES: We hypothesized that PTSD is prevalent in post-MI patients and that the subjective experience of the MI determines PTSD status. METHODS: We approached 951 post-MI patients with a questionnaire screening for PTSD symptoms related to their MI. Those responding and meeting a cutoff of PTSD symptom levels were invited to participate in a structured clinical interview to diagnose PTSD following Diagnostic and Statistical Manual of Mental Disorders (DSM-IV) criteria. Fear of dying, feelings of helplessness, and severity of pain perceived during the MI were also assessed by visual analog scales. RESULTS: The screening questionnaire was completed by 394 patients, whereby 77 met the cutoff for the interview (8 patients declined the interview). Forty of 394 patients (10.2%) had clinical PTSD (subsyndromal and syndromal forms combined). Younger age (OR 0.95, 95% CI 0.91-0.99), greater fear of dying (OR 2.77, 95% CI 1.28-5.97), and more intense feelings of helplessness (OR 2.97, 95% CI 1.42-6.21) were independent predictors of PTSD status. Perceived pain intensity during MI, sex, type of index MI, left ventricular ejection fraction, number of coronary occlusions, and highest level of total creatinine kinase were not significant predictors. CONCLUSIONS: Clinical PTSD is prevalent in post-MI patients. Demographic and particularly psychological variables related to the subjective experience of the event were stronger predictors of PTSD status than were objective measures of MI severity.
Resumo:
Diathesis-stress models of depression suggest that low self-esteem and stressful events jointly influence the development of depressive affect. More specifically, the self-esteem buffering hypothesis states that, in the face of challenging life circumstances, individuals with low self-esteem are prone to depression because they lack sufficient coping resources, whereas those with high self-esteem are able to cope effectively and consequently avoid spiraling downward into depression. The authors used data from 3 longitudinal studies of adolescents and young adults, who were assessed 4 times over a 3-year period (Study 1; N = 359), 3 times over a 6-week period (Study 2; N = 249), and 4 times over a 6-year period (Study 3; N = 2,403). In all 3 studies, low self-esteem and stressful events independently predicted subsequent depression but did not interact in the prediction. Thus, the results did not support the self-esteem buffering hypothesis but suggest that low self-esteem and stressful events operate as independent risk factors for depression. In addition, the authors found evidence in all 3 studies that depression, but not low self-esteem, is reciprocally related to stressful events, suggesting that individuals high in depression are more inclined to subsequently experience stressful events.
Protein changes and proteolytic degradation in red and white clover plants subjected to waterlogging
Resumo:
Red (Trifolium pratense L., cv. “Start”) and white clover varieties (Trifolium repens L., cv. “Debut” and cv. “Haifa”) were waterlogged for 14 days and subsequently recovered for the period of 21 days. Physiological and biochemical responses of the clover varieties were distinctive, which suggested different sensitivity toward flooding. The comparative study of morphological and biochemical parameters such as stem length, leaflet area, dry weight, protein content, protein pattern and proteolytic degradation revealed prominent changes under waterlogging conditions. Protease activity in the stressed plants increased significantly, especially in red clover cv. “Start”, which exhibited eightfold higher azocaseinolytic activity compared to the control. Changes in the protein profiles were detected by SDS-PAGE electrophoresis. The specific response of some proteins (Rubisco, Rubisco-binding protein, Rubisco activase, ClpA and ClpP protease subunits) toward the applied stress was assessed by immunoblotting. The results characterized the red clover cultivar “Start” as the most sensitive toward waterlogging, expressing reduced levels of Rubisco large and small subunits, high content of ClpP protease subunits and increased activity of protease isoforms.
Resumo:
BACKGROUND Critical incidents in clinical medicine can have far-reaching consequences on patient health. In cases of severe medical errors they can seriously harm the patient or even lead to death. The involvement in such an event can result in a stress reaction, a so-called acute posttraumatic stress disorder in the healthcare provider, the so-called second victim of an adverse event. Psychological distress may not only have a long lasting impact on quality of life of the physician or caregiver involved but it may also affect the ability to provide safe patient care in the aftermath of adverse events. METHODS A literature review was performed to obtain information on care giver responses to medical errors and to determine possible supportive strategies to mitigate negative consequences of an adverse event on the second victim. An internet search and a search in Medline/Pubmed for scientific studies were conducted using the key words "second victim, "medical error", "critical incident stress management" (CISM) and "critical incident stress reporting system" (CIRS). Sources from academic medical societies and public institutions which offer crisis management programs where analyzed. The data were sorted by main categories and relevance for hospitals. Analysis was carried out using descriptive measures. RESULTS In disaster medicine and aviation navigation services the implementation of a CISM program is an efficient intervention to help staff to recover after a traumatic event and to return to normal functioning and behavior. Several other concepts for a clinical crisis management plan were identified. CONCLUSIONS The integration of CISM and CISM-related programs in a clinical setting may provide efficient support in an acute crisis and may help the caregiver to deal effectively with future error events and employee safety.