889 resultados para Stem cell factor
Resumo:
The adult mammalian cochlea lacks regenerative capacity, which is the main reason for the permanence of hearing loss. Vestibular organs, in contrast, replace a small number of lost hair cells. The reason for this difference is unknown. In this work we show isolation of sphere-forming stem cells from the early postnatal organ of Corti, vestibular sensory epithelia, the spiral ganglion, and the stria vascularis. Organ of Corti and vestibular sensory epithelial stem cells give rise to cells that express multiple hair cell markers and express functional ion channels reminiscent of nascent hair cells. Spiral ganglion stem cells display features of neural stem cells and can give rise to neurons and glial cell types. We found that the ability for sphere formation in the mouse cochlea decreases about 100-fold during the second and third postnatal weeks; this decrease is substantially faster than the reduction of stem cells in vestibular organs, which maintain their stem cell population also at older ages. Coincidentally, the relative expression of developmental and progenitor cell markers in the cochlea decreases during the first 3 postnatal weeks, which is in sharp contrast to the vestibular system, where expression of progenitor cell markers remains constant or even increases during this period. Our findings indicate that the lack of regenerative capacity in the adult mammalian cochlea is either a result of an early postnatal loss of stem cells or diminishment of stem cell features of maturing cochlear cells.
Resumo:
Sampling and analyzing new families with inherited blood disorders are major steps contributing to the identification of gene(s) responsible for normal and pathologic hematopoiesis. Familial occurrences of hematological disorders alone, or as part of a syndromic disease, have been reported, and for some the underlying genetic mutation has been identified. Here we describe a new autosomal dominant inherited phenotype of thrombocytopenia and red cell macrocytosis in a four-generation pedigree. Interestingly, in the youngest generation, a 2-year-old boy presenting with these familial features has developed acute lymphoblastic leukemia characterized by a t(12;21) translocation. Tri-lineage involvement of platelets, red cells and white cells may suggest a genetic defect in an early multiliear progenitor or a stem cell. Functional assays in EBV-transformed cell lines revealed a defect in cell proliferation and tubulin dynamics. Two candidate genes, RUNX1 and FOG1, were sequenced but no pathogenic mutation was found. Identification of the underlying genetic defect(s) in this family may help in understanding the complex process of hematopoiesis.
Resumo:
The transcription factor PU.1 is essential for terminal myeloid differentiation, B- and T-cell development, erythropoiesis and hematopoietic stem cell maintenance. PU.1 functions as oncogene in Friend virus-induced erythroleukemia and as tumor suppressor in acute myeloid leukemias. Moreover, Friend virus-induced erythroleukemia requires maintenance of PU.1 expression and the disruption of p53 function greatly accelerates disease progression. It has been hypothesized that p53-mediated expression of the p21(Cip1) cell cycle inhibitor during differentiation of pre-erythroleukemia cells promotes selection against p53 function. In addition to the blockage of erythroblast differentiation provided by increased levels of PU.1, we propose that PU.1 alters p53 function. We demonstrate that PU.1 reduces the transcriptional activity of the p53 tumor suppressor family and thus inhibits activation of genes important for cell cycle regulation and apoptosis. Inhibition is mediated through binding of PU.1 to the DNA-binding and/or oligomerization domains of p53/p73 proteins. Lastly, knocking down endogenous PU.1 in p53 wild-type REH B-cell precursor leukemia cells leads to increased expression of the p53 target p21(Cip1).
Resumo:
INTRODUCTION: Recent findings suggest that articular cartilage contains mesenchymal progenitor cells. The aim of this study was to examine the distribution of stem cell markers (Notch-1, Stro-1 and VCAM-1) and of molecules that modulate progenitor differentiation (Notch-1 and Sox9) in normal adult human articular cartilage and in osteoarthritis (OA) cartilage. METHODS: Expression of the markers was analyzed by immunohistochemistry (IHC) and flow cytometry. Hoechst 33342 dye was used to identify and sort the cartilage side population (SP). Multilineage differentiation assays including chondrogenesis, osteogenesis and adipogenesis were performed on SP and non-SP (NSP) cells. RESULTS: A surprisingly high number (>45%) of cells were positive for Notch-1, Stro-1 and VCAM-1 throughout normal cartilage. Expression of these markers was higher in the superficial zone (SZ) of normal cartilage as compared to the middle zone (MZ) and deep zone (DZ). Non-fibrillated OA cartilage SZ showed reduced Notch-1 and Sox9 staining frequency, while Notch-1, Stro-1 and VCAM-1 positive cells were increased in the MZ. Most cells in OA clusters were positive for each molecule tested. The frequency of SP cells in cartilage was 0.14 +/- 0.05% and no difference was found between normal and OA. SP cells displayed chondrogenic and osteogenic but not adipogenic differentiation potential. CONCLUSIONS: These results show a surprisingly high number of cells that express putative progenitor cell markers in human cartilage. In contrast, the percentage of SP cells is much lower and within the range of expected stem cell frequency. Thus, markers such as Notch-1, Stro-1 or VCAM-1 may not be useful to identify progenitors in cartilage. Instead, their increased expression in OA cartilage implicates involvement in the abnormal cell activation and differentiation process characteristic of OA.
Resumo:
Tissue turnover, regeneration, and repair take place throughout life. Stem cells are key players in these processes. The characteristics and niches of the stem cell populations in different tissues, and even in related tissues, vary extensively. In this review, stem cell differentiation and stem cell contribution to tissue maintenance and regeneration is compared in the epithelia of the skin, the cornea, the lung, and the intestine. A hierarchical model for adult stem cells is proposed, based on the potency of stem cell subpopulations in a specific tissue. The potency is defined in terms of the maintenance, the repair, and the regeneration of the tissue. The niche supplies cues to maintain the specific stem cell potency.
Resumo:
Like tumor metastases, endometriotic implants require neovascularization to proliferate and invade into ectopic sites within the host. Endometrial tissue, with its robust stem cell populations and remarkable regenerative capabilities, is a rich source of proangiogenic factors. Among the most potent and extensively studied of these proteins, vascular endothelial growth factor has emerged as a critical vasculogenic regulator in endometriosis. Accordingly, angiogenesis of the nascent endometriotic lesion has become an attractive target for novel medical therapeutics and strategies to inhibit vascular endothelial growth factor action. Vascular endothelial growth factor gene regulation in endometrial and endometriosis cells by nuclear receptors, other transcription factors, and also by infiltrating immune cells is emphasized. New data showing that oxidative and endoplasmic reticulum stress increase vascular endothelial growth factor expression are provided. Finally, we review the clinical implications of angiogenesis in this condition and propose potential antiangiogenic therapies that may become useful in the control or eradication of endometriotic lesions.
Resumo:
BACKGROUND: Splenic involvement in amyloidosis is rather frequent (5-10%). An atraumatic rupture of the affected spleen is however an extremely rare event. We report on a patient with undiagnosed amyloidosis who underwent emergency splenectomy for atraumatic splenic rupture. METHODS: Review of the literature and identification of 31 patients, including our own case report, with atraumatic splenic rupture in amyloidosis. Analysis of the clinical presentation, the surgical management, the nomenclature and definition of predisposing factors of splenic rupture. RESULTS: We identified 15 women and 16 men (mean age 53.3 +/- 12.4 years; median 52, range: 27-82 years) with an atraumatic splenic rupture. Easy skin bruisability and factor X deficiency were detected in four (13%) and five patients (16%), respectively. The diagnosis of splenic rupture was made either by computed tomography (n = 12), ultrasound (n = 5), exploratory laparotomy (n = 9) or autopsy (n = 4). All patients underwent surgery (n = 27) or autopsy (n = 4). Amyloidosis was previously diagnosed in nine patients (29%). In the remaining 22 patients (71%), the atraumatic splenic rupture represented the initial manifestation of amyloidosis. Twenty-five patients (81%) suffered from primary (AL) and four patients (13%) from secondary amyloidosis (AA). In two patients, the type of amyloidosis was not specified. A moderate splenomegaly was a common feature (68%) and the characteristic intraoperative finding was an extended subcapsular hematoma with a limited parenchymal laceration (65%). In five patients with known amyloidosis, the atraumatic splenic rupture was closely associated with autologous stem-cell transplantation (ASCT) (16%). Three patients were suffering from multiple myeloma (10%). A biopsy-proven amyloidotic liver involvement was present in 14 patients (45%), which lead to atraumatic liver rupture in two patients. The splenic rupture related 30-day mortality was 26% (8/31). CONCLUSIONS: Atraumatic splenic rupture in amyloidosis is associated with a high 30-day mortality. It occurs predominantly in patients with previously undiagnosed amyloidosis. A moderate splenomegaly, coagulation abnormalities (easy skin bruisability, factor X deficiency) and treatment of amyloidosis with ASCT are considered predisposing factors for an atraumatic splenic rupture.
Resumo:
The mammalian inner ear has very limited ability to regenerate lost sensory hair cells. This deficiency becomes apparent when hair cell loss leads to hearing loss as a result of either ototoxic insult or the aging process. Coincidently, with this inability to regenerate lost hair cells, the adult cochlea does not appear to harbor cells with a proliferative capacity that could serve as progenitor cells for lost cells. In contrast, adult mammalian vestibular sensory epithelia display a limited ability for hair cell regeneration, and sphere-forming cells with stem cell features can be isolated from the adult murine vestibular system. The neonatal inner ear, however, does harbor sphere-forming stem cells residing in cochlear and vestibular tissues. Here, we provide protocols to isolate sphere-forming stem cells from neonatal vestibular and cochlear sensory epithelia as well as from the spiral ganglion. We further describe procedures for sphere propagation, cell differentiation, and characterization of inner ear cell types derived from spheres. Sphere-forming stem cells from the mouse inner ear are an important tool for the development of cellular replacement strategies of damaged inner ears and are a bona fide progenitor cell source for transplantation studies.
Resumo:
Chronic myeloid leukemia (CML) is a clonal myeloproliferative neoplasia arising from the oncogenic break point cluster region/Abelson murine leukemia viral oncogene homolog 1 translocation in hematopoietic stem cells (HSCs), resulting in a leukemia stem cell (LSC). Curing CML depends on the eradication of LSCs. Unfortunately, LSCs are resistant to current treatment strategies. The host’s immune system is thought to contribute to disease control, and several immunotherapy strategies are under investigation. However, the interaction of the immune system with LSCs is poorly defined. In the present study, we use a murine CML model to show that LSCs express major histocompatibility complex (MHC) and co-stimulatory molecules and are recognized and killed by leukemia-specific CD8+ effector CTLs in vitro. In contrast, therapeutic infusions of effector CTLs into CML mice in vivo failed to eradicate LSCs but, paradoxically, increased LSC numbers. LSC proliferation and differentiation was induced by CTL-secreted IFN-γ. Effector CTLs were only able to eliminate LSCs in a situation with minimal leukemia load where CTL-secreted IFN-γ levels were low. In addition, IFN-γ increased proliferation and colony formation of CD34+ stem/progenitor cells from CML patients in vitro. Our study reveals a novel mechanism by which the immune system contributes to leukemia progression and may be important to improve T cell–based immunotherapy against leukemia.
Resumo:
Human pluripotent stem cells are a powerful tool for modeling brain development and disease. The human cortex is composed of two major neuronal populations: projection neurons and local interneurons. Cortical interneurons comprise a diverse class of cell types expressing the neurotransmitter GABA. Dysfunction of cortical interneurons has been implicated in neuropsychiatric diseases, including schizophrenia, autism, and epilepsy. Here, we demonstrate the highly efficient derivation of human cortical interneurons in an NKX2.1::GFP human embryonic stem cell reporter line. Manipulating the timing of SHH activation yields three distinct GFP+ populations with specific transcriptional profiles, neurotransmitter phenotypes, and migratory behaviors. Further differentiation in a murine cortical environment yields parvalbumin- and somatostatin-expressing neurons that exhibit synaptic inputs and electrophysiological properties of cortical interneurons. Our study defines the signals sufficient for modeling human ventral forebrain development in vitro and lays the foundation for studying cortical interneuron involvement in human disease pathology.
Resumo:
Amniotic fluid cells (AFCs) have been proposed as a valuable source for tissue engineering and regenerative medicine. However, before clinical implementation, rigorous evaluation of this cell source in clinically relevant animal models accepted by regulatory authorities is indispensable. Today, the ovine model represents one of the most accepted preclinical animal models, in particular for cardiovascular applications. Here, we investigate the isolation and use of autologous ovine AFCs as cell source for cardiovascular tissue engineering applications. Fetal fluids were aspirated in vivo from pregnant ewes (n = 9) and from explanted uteri post mortem at different gestational ages (n = 91). Amniotic non-allantoic fluid nature was evaluated biochemically and in vivo samples were compared with post mortem reference samples. Isolated cells revealed an immunohistochemical phenotype similar to ovine bone marrow-derived mesenchymal stem cells (MSCs) and showed expression of stem cell factors described for embryonic stem cells, such as NANOG and STAT-3. Isolated ovine amniotic fluid-derived MSCs were screened for numeric chromosomal aberrations and successfully differentiated into several mesodermal phenotypes. Myofibroblastic ovine AFC lineages were then successfully used for the in vitro fabrication of small- and large-diameter tissue-engineered vascular grafts (n = 10) and cardiovascular patches (n = 34), laying the foundation for the use of this relevant pre-clinical in vivo assessment model for future amniotic fluid cell-based therapeutic applications. Copyright © 2013 John Wiley & Sons, Ltd.
Resumo:
Mesenchymal stromal cell (MSC) therapy has shown promise for the treatment of traumatic brain injury (TBI). Although the mechanism(s) by which MSCs offer protection is unclear, initial in vivo work has suggested that modulation of the locoregional inflammatory response could explain the observed benefit. We hypothesize that the direct implantation of MSCs into the injured brain activates resident neuronal stem cell (NSC) niches altering the intracerebral milieu. To test our hypothesis, we conducted initial in vivo studies, followed by a sequence of in vitro studies. In vivo: Sprague-Dawley rats received a controlled cortical impact (CCI) injury with implantation of 1 million MSCs 6 h after injury. Brain tissue supernatant was harvested for analysis of the proinflammatory cytokine profile. In vitro: NSCs were transfected with a firefly luciferase reporter for NFkappaB and placed in contact culture and transwell culture. Additionally, multiplex, quantitative PCR, caspase 3, and EDU assays were completed to evaluate NSC cytokine production, apoptosis, and proliferation, respectively. In vivo: Brain supernatant analysis showed an increase in the proinflammatory cytokines IL-1alpha, IL-1beta, and IL-6. In vitro: NSC NFkappaB activity increased only when in contact culture with MSCs. When in contact with MSCs, NSCs show an increase in IL-6 production as well as a decrease in apoptosis. Direct implantation of MSCs enhances neuroprotection via activation of resident NSC NFkappaB activity (independent of PI3 kinase/AKT pathway) leading to an increase in IL-6 production and decrease in apoptosis. In addition, the observed NFkappaB activity depends on direct cell contact.
Resumo:
Traumatic brain injury (TBI) is a major cause of morbidity and mortality in the United States. Current clinical therapy is focused on optimization of the acute/subacute intracerebral milieu, minimizing continued cell death, and subsequent intense rehabilitation to ameliorate the prolonged physical, cognitive, and psychosocial deficits that result from TBI. Adult progenitor (stem) cell therapies have shown promise in pre-clinical studies and remain a focus of intense scientific investigation. One of the fundamental challenges to successful translation of the large body of pre-clinical work is the delivery of progenitor cells to the target location/organ. Classically used vehicles such as intravenous and intra arterial infusion have shown low engraftment rates and risk of distal emboli. Novel delivery methods such as nanofiber scaffold implantation could provide the structural and nutritive support required for progenitor cell proliferation, engraftment, and differentiation. The focus of this review is to explore the current state of the art as it relates to current and novel progenitor cell delivery methods.