989 resultados para Statistical Robustness
Resumo:
The adulteration of extra virgin olive oil with other vegetable oils is a certain problem with economic and health consequences. Current official methods have been proved insufficient to detect such adulterations. One of the most concerning and undetectable adulterations with other vegetable oils is the addition of hazelnut oil. The main objective of this work was to develop a novel dimensionality reduction technique able to model oil mixtures as a part of an integrated pattern recognition solution. This final solution attempts to identify hazelnut oil adulterants in extra virgin olive oil at low percentages based on spectroscopic chemical fingerprints. The proposed Continuous Locality Preserving Projections (CLPP) technique allows the modelling of the continuous nature of the produced in house admixtures as data series instead of discrete points. This methodology has potential to be extended to other mixtures and adulterations of food products. The maintenance of the continuous structure of the data manifold lets the better visualization of this examined classification problem and facilitates a more accurate utilisation of the manifold for detecting the adulterants.
Resumo:
In recent years, wide-field sky surveys providing deep multi-band imaging have presented a new path for indirectly characterizing the progenitor populations of core-collapse supernovae (SN): systematic light curve studies. We assemble a set of 76 grizy-band Type IIP SN light curves from Pan-STARRS1, obtained over a constant survey program of 4 years and classified using both spectroscopy and machine learning-based photometric techniques. We develop and apply a new Bayesian model for the full multi-band evolution of each light curve in the sample. We find no evidence of a sub-population of fast-declining explosions (historically referred to as "Type IIL" SNe). However, we identify a highly significant relation between the plateau phase decay rate and peak luminosity among our SNe IIP. These results argue in favor of a single parameter, likely determined by initial stellar mass, predominantly controlling the explosions of red supergiants. This relation could also be applied for supernova cosmology, offering a standardizable candle good to an intrinsic scatter of 0.2 mag. We compare each light curve to physical models from hydrodynamic simulations to estimate progenitor initial masses and other properties of the Pan-STARRS1 Type IIP SN sample. We show that correction of systematic discrepancies between modeled and observed SN IIP light curve properties and an expanded grid of progenitor properties, are needed to enable robust progenitor inferences from multi-band light curve samples of this kind. This work will serve as a pathfinder for photometric studies of core-collapse SNe to be conducted through future wide field transient searches.
Resumo:
The aim of this paper is to analyse vulnerability and robustness of small and medium size enterprises (SMEs) supply chains and to consider contextual factors that might influence the success of their disturbance management: Risky product and business environment. By using an exploratory case study it is shown how these contextual factors attribute vulnerability sources, contribute to the robustness of a company’s performance and supply chain vulnerability, as well as how a company seeks to manage internal and external vulnerability sources. The exploratory case is based on a fresh food supply chain of a manufacturing SME operating in a developing market.
Case findings suggest that fresh food supply chains of a manufacturing SME in developing markets are prone to disruptions of their logistics and production processes due to ‘riskiness’ of fresh food products, the ‘riskiness’ of developing markets, as well as ‘riskiness’ of SMEs themselves. However, this does not necessarily indicate the vulnerability of an SME and its entire supply chain. Findings indicate that SMEs can be very successful in disturbance management by selective use of redesign strategies that aim to prevent or reduce the impact of disturbances. More precise, it is likely that an SME can achieve robust performance by employing preventive redesign strategies in managing disturbances that result from internal, company related vulnerability sources, while impact reduction strategies are likely to contribute to robust performance of an SME if used to manage disturbances that result from internal, supply chain related vulnerability sources, as well as external vulnerability sources.
Resumo:
Statistical downscaling (SD) methods have become a popular, low-cost and accessible means of bridging the gap between the coarse spatial resolution at which climate models output climate scenarios and the finer spatial scale at which impact modellers require these scenarios, with various different SD techniques used for a wide range of applications across the world. This paper compares the Generator for Point Climate Change (GPCC) model and the Statistical DownScaling Model (SDSM)—two contrasting SD methods—in terms of their ability to generate precipitation series under non-stationary conditions across ten contrasting global climates. The mean, maximum and a selection of distribution statistics as well as the cumulative frequencies of dry and wet spells for four different temporal resolutions were compared between the models and the observed series for a validation period. Results indicate that both methods can generate daily precipitation series that generally closely mirror observed series for a wide range of non-stationary climates. However, GPCC tends to overestimate higher precipitation amounts, whilst SDSM tends to underestimate these. This infers that GPCC is more likely to overestimate the effects of precipitation on a given impact sector, whilst SDSM is likely to underestimate the effects. GPCC performs better than SDSM in reproducing wet and dry day frequency, which is a key advantage for many impact sectors. Overall, the mixed performance of the two methods illustrates the importance of users performing a thorough validation in order to determine the influence of simulated precipitation on their chosen impact sector.
Resumo:
Identifying processes that shape species geographical ranges is a prerequisite for understanding environmental change. Currently, species distribution modelling methods do not offer credible statistical tests of the relative influence of climate factors and typically ignore other processes (e.g. biotic interactions and dispersal limitation). We use a hierarchical model fitted with Markov Chain Monte Carlo to combine ecologically plausible niche structures using regression splines to describe unimodal but potentially skewed response terms. We apply spatially explicit error terms that account for (and may help identify) missing variables. Using three example distributions of European bird species, we map model results to show sensitivity to change in each covariate. We show that the overall strength of climatic association differs between species and that each species has considerable spatial variation in both the strength of the climatic association and the sensitivity to climate change. Our methods are widely applicable to many species distribution modelling problems and enable accurate assessment of the statistical importance of biotic and abiotic influences on distributions.
Resumo:
BACKGROUND:
Statistical numeracy, necessary for making informed medical decisions, is reduced among older adults who make more decisions about their medical care and treatment than at any other stage of life. Objective numeracy scales are a source of anxiety among patients, heightened among older adults.
OBJECTIVE:
We investigate the subjective numeracy scale as an alternative tool for measuring statistical numeracy with older adult samples.
METHODS:
Numeracy was assessed using objective measures for 526 adults ranging in age from 18 to 93 years, and all participants provided subjective numeracy ratings.
RESULTS:
Subjective numeracy correlated highly with objective measurements among oldest adults (70+ years; r = 0.51, 95% CI 0.32, 0.66), and for younger age groups. Subjective numeracy explained 33.2% of age differences in objective numeracy.
CONCLUSION:
The subjective numeracy scale provides an effective tool for assessing statistical numeracy for broad age ranges and circumvents problems associated with objective numeracy measures.