1000 resultados para Statically indeterminate structures.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hypersonic vehicles represent future trends of military equipments and play an important role in future war. Thermal protection materials and structures, which relate to the safety of hypersonic vehicles, are one of the most key techniques in design and manufacture of hypersonic vehicles. Among these materials and structures, such as metallic temperature protection structure, the temperature ceramics and carbon/carbon composites are usually adopted in design. The recent progresses of research and application of ultra-high temperature materials in preparation, oxidation resistance, mechanical and physical characterization are summarized.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fibrillar structures are common features on the feet of many animals, such as geckos, spiders and flies. Theoretical analyses often use periodical array to simulate the assembly, and each fibril is assumed to be of equal load sharing (ELS). On the other hand, studies on a single fibril show that the adhesive interface is flaw insensitive when the size of the fibril is not larger than a critical one. In this paper, the Dugdale Barenblatt model has been used to study the conditions of ELS and how to enhance adhesion by tuning the geometrical parameters in fibrillar structures. Different configurations in an array of fibres are considered, such as line array, square and hexagonal patterns. It is found that in order to satisfy flaw-insensitivity and ELS conditions, the number of fibrils and the pull-off force of the fibrillar interface depend significantly on the fibre separation, the interface interacting energy, the effective range of cohesive interaction and the radius of fibrils. Proper tuning of the geometrical parameters will enhance the pull-off force of the fibrillar structures. This study may suggest possible methods to design strong adhesion devices for engineering applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present paper, a simple mechanical model is developed to predict the dynamic response of a cracked structure subjected to periodic excitation, which has been used to identify the physical mechanisms in leading the growth or arrest of cracking. The structure under consideration consists of a beam with a crack along the axis, and thus, the crack may open in Mode I and in the axial direction propagate when the beam vibrates. In this paper, the system is modeled as a cantilever beam lying on a partial elastic foundation, where the portion of the beam on the foundation represents the intact portion of the beam. Modal analysis is employed to obtain a closed form solution for the structural response. Crack propagation is studied by allowing the elastic foundation to shorten (mimicking crack growth) if a displacement criterion, based on the material toughness, is met. As the crack propagates, the structural model is updated using the new foundation length and the response continues. From this work, two mechanisms for crack arrest are identified. It is also shown that the crack propagation is strongly influenced by the transient response of the structure.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador: