946 resultados para Speckle tracking liver motion correction contrast-enhanced ultrasound


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, an algorithm for approximating the path of a moving autonomous mobile sensor with an unknown position location using Received Signal Strength (RSS) measurements is proposed. Using a Least Squares (LS) estimation method as an input, a Maximum-Likelihood (ML) approach is used to determine the location of the unknown mobile sensor. For the mobile sensor case, as the sensor changes position the characteristics of the RSS measurements also change; therefore the proposed method adapts the RSS measurement model by dynamically changing the pass loss value alpha to aid in position estimation. Secondly, a Recursive Least-Squares (RLS) algorithm is used to estimate the path of a moving mobile sensor using the Maximum-Likelihood position estimation as an input. The performance of the proposed algorithm is evaluated via simulation and it is shown that this method can accurately determine the position of the mobile sensor, and can efficiently track the position of the mobile sensor during motion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Liver-fatty acid binding protein (L-FABP) is found in high levels in enterocytes and is involved in the cytosolic solubilization of fatty acids during fat absorption. In the current studies, the interaction of L-FABP with a range of lipophilic drugs has been evaluated to explore the potential for L-FABP to provide an analogous function during the absorption of lipophilic drugs. Binding affinity for L-FABP was assessed by displacement of a fluorescent marker, 1-anilinonaphthalene-8-sulfonic acid (ANS), and the binding site location was determined via nuclear magnetic resonance chemical shift perturbation studies. It was found that the majority of drugs bound to L-FABP at two sites, with the internal site generally having a higher affinity for the compounds tested. Furthermore, in contrast to the interaction of L-FABP with fatty acids, it was demonstrated that a terminal carboxylate is not required for specific binding of lipophilic drugs at the internal site of L-FABP.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The direction and speed of motion of a one-dimensional (1-D) stimulus, such as a grating, presented within a circular aperture is ambiguous. This ambiguity, referred to as the Aperture Problem (Fennema & Thompson, 1979) results from (i) the inability to detect motion parallel to grating orientation, and (ii) the occlusion of border information, such as the ‘ends’ of the grating, by the surface forming the aperture, Adelson and Movshon's (1982) intcrsection-of-constraints (IOC) model of motion perception describes a two-stage method of disambiguating the motion of 1-D moving stimuli (e.g., gratings) to produce unambiguous motion of two-dimensional (2-D) objects (e.g., plaid patterns) made up of several 1-D components. Specifically, in the IOC model ambiguous 1-D motions extracted by Stage 1 component-selective mechanisms are integrated by Stage 2 pattern-selective mechanisms to produce unambiguous 2-D motion signals. ‘Integration’ in the context of the IOC model involves determining the single motion vector (i.e., combination of direction and speed) which is consistent with the I-D components of a 2-D object. Since the IOC model assumes that 2-D objects undergo pure translation (i.e., without distortion, rotation, etc.), the motion vector consistent with all 1-D components describes the motion of the 2-D object itself. Adelson and Movshon (1982) propose that neural implementation of the computation underlying the IOC model is reflected in the perception of coherent 2-D plaid motion reported when two separately-moving ‘component’ gratings are superimposed. Using these plaid patterns the present thesis assesses the IOC model in terms of its ability to account for the perception of 2-D motion in a variety of circumstances. In the first series of experiments it is argued that the unambiguous motion perceived for a single grating presented within a rectangular aperture (i.e., the Barberpole illusion; Wallach, 1976) reflects application of the IOC computation to the moving 1-D grating and the stationary boundary of the aperture. While contrary to the assumption which underlies the IOC model (viz., that integration occurs between moving 1-D stimuli), evidence consistent with the involvement of the IOC computation in mediating the Barberpole illusion (in which there is only one moving stimulus) is obtained by measuring plaid coherence as a function of aperture shape. It is found that rectangular apertures which bias perceived component motions in directions consistent with plaid direction facilitate plaid coherence, while rectangular apertures which bias perceived component motions in directions inconsistent with plaid direction disrupt plaid coherence. In the second series of experiments, perceived directions of motion of type I symmetrical, type I asymmetrical, and type II plaids are measured with the aim of investigating the deviations in plaid directions reported by Ferrera and Wilson (1990) and Yo and Wilson (1992). Perceived directions of both asymmetrical and type II plaids are shown to deviate away from lOC-predicted directions and towards mean component direction. Furthermore, the magnitude of these deviations is being proportional to the difference between lOC-predicted plaid direction and mean component direction. On the basis of these directional deviations, modification to the IOC model is proposed. In the modified IOC model it is argued that plaid perception involves (i) the activity of Stage 2 pattern-selective mechanisms (and the Stage 1 component-selective mechanisms which input into these pattern-selective mechanisms) involved in implementing the IOC computation, and (ii) component-selective mechanisms which influence plaid perception directly, and ‘extraneously’ to the IOC computation. In the third series of experiments the validity of this modified IOC model, as well as the validity of alternative one-stage models of plaid perception are assessed in relation to perceived directions of plaid-induced MAEs as a function of both plaid direction and mean component direction. It is found that plaid-induced MAEs are shifted away from directions opposite to lOC-predicted plaid direction towards the direction opposite to mean component direction. This pattern of results is taken to be consistent with the modified IOC model which predicts the activity, and adaptation both of mechanisms signalling plaid direction (via implementation of the IOC computation), and ‘extraneous-type’ component-selective mechanisms signalling component directions. Alternative one-stage models which predict the adaptation of only mechanisms signalling plaid direction (the feature-tracking model), or the adaptation only of mechanisms signalling component directions (the distribution-of-activity model), cannot account for the directions of plaid-induced MAEs reported. The ability of the modified IOC model to account for the perceived directions of (i) gratings in rectangular apertures, (ii) various types of plaid in circular apertures, and (iii) directions of plaid-induced MAEs, is interpreted as supporting the proposition that human motion perception is based on a parallel and distributed process involving Stage 2 pattern-selective mechanisms (and the Stage 1 component-selective mechanisms which input into these mechanisms) taken to implement the IOC computation, and component-selective mechanisms taken to provide an 'extraneous' direct contribution to motion perception.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glycogen is a cellular energy store that is crucial for whole body energy metabolism, metabolic regulation and exercise performance. To understand glycogen structure we have purified glycogen particles from rat liver and human skeletal muscle tissues and compared their biophysical properties with those found in commercial glycogen preparations. Ultrastructural analysis of commercial liver glycogens fails to reveal the classical α-rosette structure but small irregularly shaped particles. In contrast, commercial slipper limpet glycogen consists of β-particles with similar branching and chain lengths to purified rat liver glycogen together with a tendency to form small α-particles, and suggest it should be used as a source of glycogen for all future studies requiring a substitute for mammalian liver glycogen.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose a simple technique for extracting camera motion parameters from a sequence of images. The method can estimate qualitatively camera pan, tilt, zoom, roll, and horizontal and vertical tracking. Unlike most other comparable techniques, the present method can distinguish pan from horizontal tracking, and tilt from vertical tracking. The technique can be applied to the automated indexing of video and film sequences.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the possible models of the human visual system (HVS) in the computer vision literature has a high resolution fovea and exponentially decreasing resolution periphery. The high resolution fovea is used to extract necessary information in order to solve a vision task and the periphery may be used to detect motion. To obtain the desired information, the fovea is guided by the contents of the scene and other knowledge to position the fovea over areas of interest. These eye movements are called saccades and corrective saccades. A two stage process has been implemented as a mechanism for changing foveation in log polar space. Initially, the open loop stage roughly foveates on the best interest feature and then the closed loop stage is invoked to accurately iteratively converge onto the foveation point. The open loop stage developed for the foveation algorithm is applied to saccadic eye movements and a tracking system. Log polar space is preferred over Cartesian space as: (1) it simultaneously provides high resolution and a wide viewing angle; and (2) feature invariance occurs in the fovea which simplifies the foveation process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes an application of camera motion estimation to index cricket games. The shots are labeled with the type of shot: glance left, glance right, left drive, right drive, left cut, right pull and straight drive. The method has the advantages that it is fast and avoids complex image segmentation. The classification of the cricket shots is done using an incremental learning algorithm. We tested the method on over 600 shots and the results show that the system has a classification accuracy of 74%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a method that uses camera motion parameters to recognise 7 types of American football plays. The approach is based on the motion information extracted from the video and it can identify short and long pass plays, short and long running plays, quarterback sacks, punt plays and kickoff plays. This method has the advantage that it is fast and it does not require player or ball tracking. The system was trained and tested using 782 plays and the results show that the system has an overall classification accuracy of 68%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Point Distribution Model (PDM) has proven effective in modelling variations in shape in sets of images, including those in which motion is involved such as body and hand tracking. This paper proposes an extension to the PDM through a re-parameterisation of the model which uses factors such as the angular velocity and distance travelled for sets of points on a moving shape. This then enables non-linear quantities such as acceleration and the average velocity of the body to be expressed in a linear model by the PDM. Results are shown for objects with known acceleration and deceleration components, these being a simulated pendulum modelled using simple harmonic motion and video sequences of a real pendulum in motion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To enable high-level semantic indexing of video, we tackle the problem of automatically structuring motion pictures into meaningful story units, namely scenes. In our recent work, drawing guidance from film grammar, we proposed an algorithmic solution for extracting scenes in motion pictures based on a shot neighborhood color coherence measure. In this paper, we extend our work by presenting various refinement mechanisms, inspired by the knowledge of film devices that are brought to bear while crafting scenes, to further improve the results of the scene detection algorithm. We apply the enhanced algorithm to ten motion pictures and demonstrate the resulting improvements in performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: To compare the performance of a low-addition silicone hydrogel multifocal soft lens with other soft lens correction options in a group of habitual soft lens wearers of distance correction who are symptomatic of early presbyopia.

Method: This clinical study was designed as a prospective, double-masked, randomized, crossover, dispensing trial consisting of four 1-week phases, one for each of the correction modalities: a low-addition silicone hydrogel multifocal soft lens, monovision, habitual correction, and optimized distance visual correction. The prescriptions of all modalities were finalized at a single fitting visit, and the lenses were worn according to a randomized schedule. All lenses were made from lotrafilcon B material. A series of objective vision tests were conducted: high- and low-contrast LogMAR under high- and low-room lighting conditions, stereopsis, and critical print size. A number of other data collection methods used were novel: some data were collected under controlled laboratory-based conditions and others under real-world conditions, some of which were completed on a BlackBerry hand-held communication device.

Results: All participants were able to be fit with all four correction modalities. Objective vision tests showed no statistical difference between the lens modalities except in the case of low-contrast near LogMAR acuity under low-lighting levels where monovision (+0.29 ± 0.10) performed better than the multifocal (+0.33 ± 0.11, P=0.027) and the habitual (+0.37 ± 0.12, P<0.001) modalities. Subjective ratings indicated a statistically better performance provided by the multifocal correction compared with monovision, particularly for the vision associated with driving tasks such as driving during the daytime (93.3 ± 8.8 vs. 84.2 ± 23.7, P=0.05), at nighttime (88.8 ± 11.7 vs. 74.9 ± 23.6, P=0.001), any associated haloes or glare (92.0 ± 10.6 vs. 78.0 ± 22.8, P=0.003), and observing road signs (90.1 ± 11.8 vs. 79.4 ± 20.2, P=0.027). Preference for the multifocal compared with monovision was also reported when watching television (95.0 ± 6.4 vs. 82.6 ± 20.1, P=0.001) and when changing focus from distance to near (87.0 ± 13.4 vs. 66.1 ± 32.2, P<0.001).

Conclusions: For this group of early presbyopes, the AIR OPTIX AQUA MULTIFOCAL-Low Add provided a successful option for visual correction, which was supported by the results of subjective ratings, many of which were made during or immediately after performing such activities as reading, using a computer, watching television, and driving. These results suggest that making a prediction of success or not based on consulting room acuity tests alone is probably unwise.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In simulations of the hydrodynamics of the multiphase flow in gas– liquid systems with finite sizes of bubbles, the important thing is to compute explicitly the time evolution of the gas–liquid interface in many engineering applications. The most commonly used methods representing this approach are: the volume of fluid and the phase field methods. The later has gained significant interest because of its capability of performing numerical computations on a fixed Cartesian grid without having to parametrise these objects (Eulerian approach) and at the same time it allows to follow the interface ( for example bubble’s shape) that change the topology. In this paper, both numerical (phase field method) and experimental results for the bubble shapes underneath a downward facing plane is presented. Experiments are carried out to see the bubble sliding motion underneath a horizontal and inclined anode. It is assumed that the bubble formed under the anode surface is deformed (flattened) due to buoyant field before it goes around the anode corner. The bubble elongates to form a tail-like shape. The change in shape of the bubble is almost instantaneous and has a significant effect on the localised hydrodynamics around the bubble, which could influence the dynamics of the flow patterns in the Hall–Héroult cell. This deformation is the main cause of the bubble wake and the induced flow field in the aluminium cell. Various parameters such as bubble size, deformation and its sliding mechanism at different surface tensions are discussed and compared with experimental results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper addresses the problem of tracking moving objects of variable appearance in challenging scenes rich with features and texture. Reliable tracking is of pivotal importance in surveillance applications. It is made particularly difficult by the nature of objects encountered in such scenes: these too change in appearance and scale, and are often articulated (e.g. humans). We propose a method which uses fast motion detection and segmentation as a constraint for both building appearance models and their robust propagation (matching) in time. The appearance model is based on sets of local appearances automatically clustered using spatio-kinetic similarity, and is updated with each new appearance seen. This integration of all seen appearances of a tracked object makes it extremely resilient to errors caused by occlusion and the lack of permanence of due to low data quality, appearance change or background clutter. These theoretical strengths of our algorithm are empirically demonstrated on two hour long video footage of a busy city marketplace.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background

Psychophysical measurement of the function of individual precortical visual pathways (magnocellular, parvocellular and koniocellular) has enabled the development of sensitive tests for glaucoma and has enhanced understanding of its pathophysiology. Such pathways can be further subdivided into their “On” and “Off” components, which have anatomical and physiological asymmetries. This study investigated whether On and Off subdivisions of the magnocellular (M) pathway are differentially affected by glaucoma.

Methods:
20 participants with glaucoma and 20 controls underwent two psychophysical procedures that have been shown to assess the M pathway (steady pedestal task) and its On and Off subdivisions (pedestal-delta-pedestal task) respectively. Luminance discrimination thresholds were measured foveally, using both increment and decrement stimuli.

Results:
The steady pedestal (undifferentiated M-pathway) task separated the glaucoma and control groups (p = 0.04) with equivalent outcomes for increment and decrement targets. The pedestal-delta-pedestal task (isolated On and Off M-pathway subdivisions) also differentiated between groups (p = 0.025), but the outcome was not dependent on which subdivision was isolated.

Conclusions:
This study found that increment and decrement targets can be used with equal effectiveness for detecting contrast processing deficits in early glaucoma. Outcomes further suggested that glaucoma affects On and Off subdivisions of the M-pathway equivalently.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Motion cueing algorithms (MCAs) are playing a significant role in driving simulators, aiming to deliver the most accurate human sensation to the simulator drivers compared with a real vehicle driver, without exceeding the physical limitations of the simulator. This paper provides the optimisation design of an MCA for a vehicle simulator, in order to find the most suitable washout algorithm parameters, while respecting all motion platform physical limitations, and minimising human perception error between real and simulator driver. One of the main limitations of the classical washout filters is that it is attuned by the worst-case scenario tuning method. This is based on trial and error, and is effected by driving and programmers experience, making this the most significant obstacle to full motion platform utilisation. This leads to inflexibility of the structure, production of false cues and makes the resulting simulator fail to suit all circumstances. In addition, the classical method does not take minimisation of human perception error and physical constraints into account. Production of motion cues and the impact of different parameters of classical washout filters on motion cues remain inaccessible for designers for this reason. The aim of this paper is to provide an optimisation method for tuning the MCA parameters, based on nonlinear filtering and genetic algorithms. This is done by taking vestibular sensation error into account between real and simulated cases, as well as main dynamic limitations, tilt coordination and correlation coefficient. Three additional compensatory linear blocks are integrated into the MCA, to be tuned in order to modify the performance of the filters successfully. The proposed optimised MCA is implemented in MATLAB/Simulink software packages. The results generated using the proposed method show increased performance in terms of human sensation, reference shape tracking and exploiting the platform more efficiently without reaching the motion limitations.