964 resultados para Solid-extracellular fluid interaction


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Strain-dependent hydraulic conductivities are uniquely defined by an environmental factor, representing applied normal and shear strains, combined with intrinsic material parameters representing mass and component deformation moduli, initial conductivities, and mass structure. The components representing mass moduli and structure are defined in terms of RQD (rock quality designation) and RMR (rock mass rating) to represent the response of a whole spectrum of rock masses, varying from highly fractured (crushed) rock to intact rock. These two empirical parameters determine the hydraulic response of a fractured medium to the induced-deformations The constitutive relations are verified against available published data and applied to study one-dimensional, strain-dependent fluid flow. Analytical results indicate that both normal and shear strains exert a significant influence on the processes of fluid flow and that the magnitude of this influence is regulated by the values of RQD and RMR.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

.:Abstract-Objective: Bioelectrical impedance analysis (BIA) is widely used as bedside assessment of body composition. Body cell mass (BCM) and intracellular water (ICW) are clinically important body compartments. Estimates of ICW obtained from BIA by different calculation approaches were compared to a reference method in male HIV-infected patients. Patients: Representative subsample of clinically stable HIV-infected outpatients, consisting of 42 men with a body mass index of 22.4 +/- 3.8 kg/m(2) (range, 13-31 kg/m(2)). Methods: Total body potassium was assessed in a whole body counter, and compared to 50 kHz mono-frequency BIA and multifrequency bioelectrical impedance spectroscopy. Six different prediction equations for ICW from BIA data were applied. Methods were compared by the Bland-Altman method. Results: BIA-derived ICW estimates explained 58% to 73% of the observed variance in ICW (TBK), but limits of confidence were wide (-16.6 to +18.2% for the best method). BIA overestimated low ICW (TBK) and underestimated high ICW (TBK) when normalized for weight or height. Mono- and multifrequency BIA were not different in precision but population-specific equations tended to narrower confidence limits. Conclusion: BIA is an unreliable method to estimate ICW in this population, in contrast to the better established estimation of total body water and extracellular water. Potassium depletion in severe malnutrition may contribute to this finding but a major part of the residual between methods remains unexplained. (C) 2000 Harcourt Publishers Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previously, two binding sites for interleukin 5 (IL-5) were identified on the IL-5 receptor alpha chain (IL-5R alpha). They are located within the CD loop of the first fibronectin type III (FnIII)-like domain and the EF loop of the second FnIII-like domain. The first binding site was identified by exploiting the different abilities of human IL-5R alpha (hIL-5R alpha) and mouse IL-5R alpha (mIL-5R alpha) to bind hIL-5. Here we show that ovine IL-5 (oIL-5) has the ability to activate the hIL-5R alpha but not the mIL-5R alpha. By using chimeras of the mIL-5R alpha and hIL-5R alpha we demonstrate that residues within the first and third FnIII-like domains of mIL-5R alpha are responsible for this lack of activity. Furthermore, mutation of residues on hIL-5R alpha to mIL-5R alpha within the predicted DE and FG loop regions of the third FnIII domain reduces oIL-5 activity, These results show that regions of the third FnIII domain of IL-5R alpha are involved in binding, in addition to the regions in domains one and two of the IL-5R alpha that were identified in an earlier study. (C) 2000 Academic Press.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Numerical methods ave used to solve double diffusion driven reactive flow transport problems in deformable fluid-saturated porous media. in particular, thp temperature dependent reaction rate in the non-equilibrium chemical reactions is considered. A general numerical solution method, which is a combination of the finite difference method in FLAG and the finite element method in FIDAP, to solve the fully coupled problem involving material deformation, pore-fluid flow, heat transfer and species transport/chemical reactions in deformable fluid-saturated porous media has been developed The coupled problem is divided into two subproblems which are solved interactively until the convergence requirement is met. Owing to the approximate nature of the numerical method, if is essential to justify the numerical solutions through some kind of theoretical analysis. This has been highlighted in this paper The related numerical results, which are justified by the theoretical analysis, have demonstrated that the proposed solution method is useful for and applicable to a wide range of fully coupled problems in the field of science and engineering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lymphedema is an accumulation of lymph fluid in the limb resulting from an insufficiency of the lymphatic system. It is commonly associated with surgical or radiotherapy treatment for breast cancer. As with many progressively debilitating disorders, the effectiveness of treatment is significantly improved by earlier intervention. Multiple frequency bioelectrical impedance analysis (MFBIA) previously was shown to provide accurate relative measures of lymphedema in the upper limb in patients after treatment for breast cancer, This presentation reports progress to date on a three-year prospective study to evaluate the efficacy of MFBIA to predict the early onset of lymphedema in breast cancer patients following treatment. Bioelectrical impedance measurements of each upper limb were recorded in a group of healthy control subjects (n = 50) to determine the ratio of extracellular limb-fluid volumes. From this population, the expected normal range of asymmetry (99.7% confidence) between the limbs was determined, Patients undergoing surgery to treat breast cancer were recruited into the study, and MFBIA measurements were recorded presurgery, at one month and three months after surgery, and then at two-month intervals for up to 24 months postsurgery, When patients had an MFBIA measure outside the 99.7% range of the control group, they were referred to their physician for clinical assessment. Results to date: Over 100 patients were recruited into the study over the past two years; at present, 19 have developed lymphedema and, of these, 12 are receiving treatment. In each of these 19 cases, MFBIA predicted the onset of the condition up to four months before it could be clinically diagnosed. The false-negative rate currently is zero, The study will continue to monitor patients over the remaining year to accurately ascertain estimates of specificity and sensitivity of the procedure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The solution treatment stage of the T6 heat-treatment of Al-7%Si-Mg foundry alloys influences microstructural features such as Mg2Si dissolution, and eutectic silicon spheroidisation and coarsening. Microstructural and microanalytical studies have been conducted across a range of Sr-modified Al-7%Si alloys, with an Fe content of 0.12% and Mg contents ranging from 0.3-0.7wt%. Qualitative and quantitative metallography have shown that, in addition to the above changes, solution treatment also results in changes to the relative proportions of iron-containing intermetallic particles and that these changes are composition-dependent. While solution treatment causes a substantial transformation of pi phase to beta phase in low Mg alloys (0.3-0.4%), this change is not readily apparent at higher Mg levels (0.6-0.7%). The pi to beta transformation is accompanied by a release of Mg into the aluminum matrix over and above that which arises from the rapid dissolution of Mg2Si. Since the level of matrix Mg retained after quenching controls an alloy's subsequent precipitation hardening response, a proper understanding of this phase transformation is crucial if tensile properties are to be maximised.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The equity premium arises from the interaction between the atemporal risk premium for equity, the risk-free rate of intertemporal substitution and the impact of risk on the precautionary motive for saving. Depending on parameter values, the equity premium may either be increased or reduced by the presence of undiversifiable background risk. (C) 2000 Elsevier Science S.A. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

X-Ray crystal structures, C-13 NMR spectra and theoretical calculations (B3LYP/6-31G*) are reported for the mesoionic (zwitterionic) pyridopyrimidinylium- and pyridooxazinyliumolates 2a, 3a and 5a,b as well as the enol ether 11b and the enamine 11c. The 1-NH compounds like 1a, 2a and 3a exist in the mesoionic form in the crystal and in solution, but the OH tautomers such as 1b and 2b dominate in the gas phase as revealed by the Ar matrix IR spectra in conjunction with DFT calculations. All data indicate that the mesoionic compounds can be regarded as intramolecular pyridine-ketene zwitterions (cf. 16 --> 17) with a high degree of positive charge on the pyridinium nitrogen, a long pyridinium N-CO bond (ca. 1.44-1.49 Angstrom), and normal C=O double bonds (ca. 1.22 Angstrom). All mesoionic compounds exhibit a pronounced tilting of the olate C=O groups (the C=O groups formally derived from a ketene) towards the pyridinium nitrogen, giving NCO angles of 110-118 degrees. Calculations reveal a hydrogen bond with 6-CH, analogous to what is found in ketene-pyridine zwitterions and the C3O2-pyridine complex. The 2-OH tautomers of type 1b, 2b, and 11 also show a high degree of zwitterionic character as indicated by the canonical structures 11 12.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The action of water waves moving over a porous seabed drives a seepage flux into and out of the marine sediments. The volume of fluid exchange per wave cycle may affect the rate of contaminant transport in the sediments. In this paper, the dynamic response of the seabed to ocean waves is treated analytically on the basis of pore-elastic theory applied to a porous seabed. The seabed is modelled as a semi-infinite, isotropic, homogeneous material. Most previous investigations on the wave-seabed interaction problem have assumed quasi-static conditions within the seabed, although dynamic behaviour often occurs in natural environments. Furthermore, wave pressures used in the previous approaches were obtained from conventional ocean wave theories: which are based on the assumption of an impermeable rigid seabed. By introducing a complex wave number, we derive a new wave dispersion equation, which includes the seabed characteristics (such as soil permeability, shear modulus, etc.). Based on the new closed-form analytical solution, the relative differences of the wave-induced seabed response under dynamic and quasi-static conditions are examined. The effects of wave and soil parameters on the seepage flux per wave cycle are also discussed in detail. (C) 2000 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We use the finite element method to model three-dimensional convective pore-fluid flow in fluid-saturated porous media when they are heated from below. In particular, we employ the particle-tracking technique to mimic the trajectories of particles in three-dimensional fluid flow problems. The related numerical results demonstrated that: (1) The progressive asymptotic approach procedure, which was previously developed for the finite element modelling of two-dimensional convective pore-fluid flow problems, is equally applicable to the finite element modelling of three-dimensional convective pore-fluid flow in fluid-saturated porous media heated from below. (2) The perturbation of gravity at different planes has a significant effect on the pattern of three-dimensional convective pore-fluid flow and therefore, may influence the pattern of orebody formation and mineralization in three-dimensional hydrothermal systems. Copyright (C) 2001 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Within steroid receptor heterocomplexes the large tetraticopeptide repeat-containing immunophilins, cyclophilin 40 (CyP40), FKBP51, and FKBP52, target a common interaction site in heat shock protein 90 (HspSO) and act coordinately with HspSO to modulate receptor activity. The reversible nature of the interaction between the immunophilins and HspSO suggests that relative cellular abundance might be a key determinant of the immunophilin component within steroid receptor complexes. To investigate CyP40 gene regulation, we have isolated a fi-kilobase (kb) 5 ' -flanking region of the human gene and demonstrated that a similar to 50 base pair (bp) sequence adjacent to the transcription start site is essential for CyP40 basal expression. Three tandemly arranged Ets sites within this critical region were identified as binding elements for the multimeric Ets-related transcription factor, GA binding protein (GABP). Functional studies of this proximal promoter sequence, in combination with mutational analysis, confirmed these sites to be crucial for basal promoter function. Furthermore, overexpression of both GABP alpha and GABP beta subunits in Cos1 cells resulted in increased endogenous CyP40 mRNA levels. Significantly, a parallel increase in FKBP52 mRNA expression was not observed, highlighting an important difference in the mode of regulation of the CyP40 and FKBP52 genes. Our results identify GABP as a key regulator of CyP40 expression. GAFF is a common target of mitogen and stress-activated pathways and may integrate these diverse extracellular signals to regulate CyP40 gene expression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interaction forces between protein inclusion bodies and an air bubble have been quantified using an atomic force microscope (AFM). The inclusion bodies were attached to the AFM tip by covalent bonds. Interaction forces measured in various buffer concentrations varied from 9.7 nN to 25.3 nN (+/- 4-11%) depending on pH. Hydrophobic forces provide a stronger contribution to overall interaction force than electrostatic double layer forces. It also appears that the ionic strength affects the interaction force in a complex way that cannot be directly predicted by DLVO theory. The effects of pH are significantly stronger for the inclusion body compared to the air bubble. This study provides fundamental information that will subsequently facilitate the rational design of flotation recovery system for inclusion bodies. It has also demonstrated the potential of AFM to facilitate the design of such processes from a practical viewpoint.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present the finite element simulations of reactive mineral carrying fluids mixing and mineralization in pore-fluid saturated hydrothermal/sedimentary basins. In particular we explore the mixing of reactive sulfide and sulfate fluids and the relevant patterns of mineralization for Load, zinc and iron minerals in the regime of temperature-gradient-driven convective flow. Since the mineralization and ore body formation may last quite a long period of time in a hydrothermal basin, it is commonly assumed that, in the geochemistry, the solutions of minerals are in an equilibrium state or near an equilibrium state. Therefore, the mineralization rate of a particular kind of mineral can be expressed as the product of the pore-fluid velocity and the equilibrium concentration of this particular kind of mineral Using the present mineralization rate of a mineral, the potential of the modern mineralization theory is illustrated by means of finite element studies related to reactive mineral-carrying fluids mixing problems in materially homogeneous and inhomogeneous porous rock basins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to investigate the effect of material anisotropy on convective instability of three-dimensional fluid-saturated faults, an exact analytical solution for the critical Rayleigh number of three-dimensional convective flow has been obtained. Using this critical Rayleigh number, effects of different permeability ratios and thermal conductivity ratios on convective instability of a vertically oriented three-dimensional fault have been examined in detail. It has been recognized that (1) if the fault material is isotropic in the horizontal direction, the horizontal to vertical permeability ratio has a significant effect on the critical Rayleigh number of the three-dimensional fault system, but the horizontal to vertical thermal conductivity ratio has little influence on the convective instability of the system, and (2) if the fault material is isotropic in the fault plane, the thermal conductivity ratio of the fault normal to plane has a considerable effect on the critical Rayleigh number of the three-dimensional fault system, but the effect of the permeability ratio of the fault normal to plane on the critical Rayleigh number of three-dimensional convective flow is negligible.