956 resultados para Solar heating.
Resumo:
A new strategy for enhancing the efficiency and reducing the production cost of TiO 2 solar cells by design of a new formulated TiO 2 paste with tailored crystal structure and morphology is reported. The conventional three- or four-fold layer deposition process was eliminated and replaced by a single layer deposition of TiO 2 compound. Different TiO 2 pastes with various crystal structures, morphologies and crystallite sizes were prepared by an aqueous particulate sol-gel process. Based on simultaneous differential thermal (SDT) analysis the minimum annealing temperature to obtain organic-free TiO 2 paste was determined at 400°C, being one of the lowest crystallization temperatures of TiO 2 photoanode electrodes for solar cell application. Photovoltaic measurements showed that TiO 2 solar cell with pure anatase crystal structure had higher power conversion efficiency (PCE) than that made of pure rutile-TiO 2. However, the PCE of solar cells depends on the anatase to rutile weight ratio, reaching a maximum at a specific value due to the synergic effect between anatase and rutile TiO 2 nanoparticles. Moreover, it was found that the PCE of solar cells made of crystalline TiO 2 powders was much higher, increasing in the range 32-84% depending on anatase to rutile weight ratio, than that of prepared by amorphous powders. TiO 2 solar cell with the morphology of mixtures of nanoparticles and microparticles had higher PCE than the solar cell with the same phase composition containing TiO 2 nanoparticles due to the role of TiO 2 microparticles as light scattering particles. The presented strategy would open up new insight into fabrication and structural design of low-cost TiO 2 solar cells with high power conversion efficiency. © 2012 Elsevier Ltd.
Effect of laser heating temperature on coating characteristics of Stellite 6 deposited by cold spray
Resumo:
Laser-assisted cold spray (LCS) is a new coating and fabrication process which combines some advantages of CS: solid-state deposition, retain their initial composition and high build rate with the ability to deposit materials which are either difficult or impossible to deposit using cold spray alone. Stellite 6 powder is deposited on medium carbon steels by LCS using N 2 as carrier gas pressure. The topography, cross section thickness, structure of the coatings is examined by SEM, optical microscopy, EDX. The results show that thickness and fluctuation of coating are improved with increased deposition site temperature. Porosity of coating is affected by N 2 and deposition site temperature. In this paper, it presents optimal coating using N 2 at a pressure of 3 MPa and temperature of 450°C and deposition site temperature of 1100°C.
Resumo:
To extract gas from hydrate reservoirs, it has to be dissociated in situ. This endothermic dissociation process absorbs heat energy from the formation and pore fluid. The heat transfer governs the dissociation rate, which is proportional to the difference between the actual temperature and the equilibrium temperature. This study compares three potential gas production schemes from hydrate-bearing soil, where the radial heat transfer is governing. Cylindrical samples with 40% pore-filling hydrate saturation were tested. The production tests were carried out over 90 min by dissociating the hydrate from a centered miniature wellbore, by either lowering the pressure to 6, 4, or 6 MPa with simultaneous heating of the wellbore to 288 K. All tests were replicated by a numerical simulation. With additional heating at the same wellbore pressure, the gas production from hydrates could, on average, be increased by 1.8 and 3.6 times in the simulation and experiments, respectively. If the heat influx from the outer boundary is limited, a simulation showed that the specific heat of the formation is rapidly used up when the wellbore is only depressurized and not heated. © 2012 American Chemical Society.
Resumo:
In this letter we report a facile one-pot synthesis of intercalated ZnO particles for inexpensive, low-temperature solution processed dye-sensitised solar cells. High interconnectivity facilitates enhanced charge transfer between the ZnO nanoparticles and a consequent enhancement in cell efficiency. ZnO thin films were formed from a wide range of nanoparticle diameters which simultaneously increased optical scattering whilst enhancing dye loading. A possible growth mechanism was proposed for the synthesis of ZnO nanoparticles. The intercalated ZnO nanoparticle thin films were integrated into the photoanodes of dye-sensitised solar cells which showed an increase in performance of 37% compared to structurally equivalent cells employing ZnO nanowires. © 2012 Elsevier B.V.
Resumo:
Heterojunction is an important structure for the development of photovoltaic solar cells. In contrast to homojunction structures, heterojunction solar cells have internal crystalline interfaces, which will reflect part of the incident light, and this has not been considered carefully before though many heterostructure solar cells have been commercialized. This paper discusses the internal reflection for various material systems used for the development of heterostructure-based solar cells. It has been found that the most common heterostructure solar cells have internal reflection less than 2%, while some potential heterojunction solar cells such as ITO/GaAs, ITO/InP, Si/Ge, polymer/semiconductors and oxide semiconductors may have internal reflection as high as 20%. Also it is worse to have a window layer with a lower refractive index than the absorption layer for solar cells. Ignoring this strong internal reflection will lead to severe deterioration and reduction of conversion efficiency; therefore measures have to be taken to minimize or prevent this internal reflection. © 2013 Elsevier B.V.
Resumo:
The aim of this report is to compare the trapped field distribution under a local heating created at the sample edge for different sample morphologies. Hall probe mappings of the magnetic induction trapped in YBCO bulk samples maintained out of thermal equilibrium were performed on YBCO bulk single domains, YBCO single domains with regularly spaced hole arrays, and YBCO superconducting foams. The capability of heat draining was quantified by two criteria: the average induction decay and the size of the thermally affected zone caused by a local heating of the sample. Among the three investigated sample shapes, the drilled single domain displays a trapped induction which is weakly affected by the local heating while displaying a high trapped field. Finally, a simple numerical modelling of the heat flux spreading into a drilled sample is used to suggest some design rules about the hole configuration and their size. © 2005 IOP Publishing Ltd.
Resumo:
Two solar cells based on an InGaN/GaN p-i-n hetero-junction, but having different dislocation densities, were fabricated and characterized. The structures were grown on c-plane (0001) GaN-on-sapphire templates with different threading dislocation (TD) densities of 5×108 and 5×109 cm-2. Structural characterization revealed the presence of V-defects in the InGaN epilayer. Since each V-defect was associated with a TD, the structural as well as the optical properties worsened with a higher TD density in the GaN/sapphire template. It was also found that additional dislocations were generated in the p-GaN layer over the V-defects in the InGaN layer. Because of its superior structural quality, the peak external quantum efficiency (EQE) of the low TD density sample was three times higher than that of the high TD density sample. © 2013 Elsevier B.V.
Resumo:
We have investigated the dynamics of hot charge carriers in InP nanowire ensembles containing a range of densities of zinc-blende inclusions along the otherwise wurtzite nanowires. From time-dependent photoluminescence spectra, we extract the temperature of the charge carriers as a function of time after nonresonant excitation. We find that charge-carrier temperature initially decreases rapidly with time in accordance with efficient heat transfer to lattice vibrations. However, cooling rates are subsequently slowed and are significantly lower for nanowires containing a higher density of stacking faults. We conclude that the transfer of charges across the type II interface is followed by release of additional energy to the lattice, which raises the phonon bath temperature above equilibrium and impedes the carrier cooling occurring through interaction with such phonons. These results demonstrate that type II heterointerfaces in semiconductor nanowires can sustain a hot charge-carrier distribution over an extended time period. In photovoltaic applications, such heterointerfaces may hence both reduce recombination rates and limit energy losses by allowing hot-carrier harvesting.