916 resultados para Sodium Chloride
Resumo:
A facile oxidative cleavage of cyclic acetals to their respective esters using an inexpensive reagent system, sodium perborate/acetic anhydride is described.
Resumo:
Glasses of the alkali tin phosphate system have been investigated. The infrared absorption and fluorescence spectra of the glasses have been examined. It is found that tin is present in both + 2 and + 4 oxidation states. Also tin ions occupy four- or six-coordinated sites in the glass.
Resumo:
Reported distress to an industrial structure from phosphate/sulfate contamination of kaolinitic foundation soil at an industrial location in Southern India prompted this laboratory study. The study examines the short-term effect of sodium sulfate/phosphate contamination on the swell/compression characteristics of a commercial kaolinite. Experimental results showed that the unsaturated contaminated kaolinite specimens exhibited slightly higher swell potentials and lower compressions than the unsaturated uncontaminated kaolinite specimens. It is suggested that the larger double layer promoted by the increased exchangeable sodium ion concentration is responsible for the slightly higher swell potentials and lower compressions of the unsaturated contaminated kaolinite specimens.
Resumo:
Experimental ionic conductivity of different alkali ions in water shows markedly different dependences on pressure. Existing theories such as that of Hubbard-Onsager are unable to explain these dependences on pressure of the ionic conductivity for all ions. We report molecular dynamics investigation of potassium chloride solution at low dilution in water at several pressures between 1 bar and 2 kbar. Two different potential models have been employed. One of the models successfully reproduces the experimentally observed trend in ionic conductivity of K+ ions in water over the 0.001-2 kbar range. We also propose a theoretical explanation, albeit at a qualitative level, to account for the dependence of ionic conductivity on pressure in terms of the previously studied Levitation Effect. It also provides a microscopic picture in terms of the pore network in liquid water.
Resumo:
Differently hydrated sodium p-nitrophenolate (NPNa) crystals were obtained while growing them from different solvents such as methanol and water. Thermal analysis and powder X-ray diffraction studies were carried out on these crystals. Kurtz powder SHG technique was used for qualitative assessment of their nonlinear optical (NLO) activity. From the detailed single-crystal X-ray diffraction studies it is established that NPNa has three different forms, of which only one is found to possess NLO activity. Additionally, a new NLO active crystal was also found to grow from aqueous solution. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
A distinctive feature of the Nhecolandia, a sub-region of the Pantanal wetland in Brazil, is the presence of both saline and freshwater lakes. Saline lakes used to be attributed to a past and phase during the Pleistocene. However, recent studies have shown that saline and fresh water lakes are linked by a continuous water table, indicating that saline water could come from a contemporary concentration process. This concentration process could also be responsible for the large chemical variability of the waters observed in the area. A regional water sampling has been conducted in surface and sub-surface water and the water table, and the results of the geochemical and statistical analysis are presented. Based on sodium contents, the concentration shows a 1: 4443 ratio. All the samples belong to the same chemical family and evolve in a sodic alkaline manner. Calcite or magnesian calcite precipitates very early in the process of concentration, probably followed by the precipitation of magnesian silicates. The most concentrated solutions remain under-saturated with respect to the sodium carbonate salt, even if this equilibrium is likely reached around the saline lakes. Apparently, significant amounts of sulfate and chloride are lost simultaneously from the solutions, and this cannot be explained solely by evaporative concentration. This could be attributed to the sorption on reduced minerals in a green sub-surface horizon in the "cordilhieira" areas. In the saline lakes, low potassium, phosphate, magnesium, and sulfate are attributed to algal blooms. Under the influence of evaporation, the concentration of solutions and associated chemical precipitations are identified as the main factors responsible for the geochemical variability in this environment (about 92 % of the variance). Therefore, the saline lakes of Nhecolandia have to be managed as landscape units in equilibrium with the present water flows and not inherited from a past and phase. In order to elaborate hydrochemical tracers for a quantitative estimation of water flows, three points have to be investigated more precisely: (1) the quantification of magnesium involved in the Mg-calcite precipitation; (2) the identification of the precise stoichiometry of the Mg-silicate; and (3) the verification of the loss of chloride and sulfate by sorption onto labile iron minerals.
Resumo:
The kinetics of thermal degradation of poly(vinyl chloride) (PVC) in solution was investigated at various temperatures (210-250degreesC). The degradation rate coefficients were determined from the time evolution of the molecular weight distribution (MWD). The energy of activation, determined from the temperature dependence of the rate coefficient, was 26.6 kcal/mol. The degradation of PVC was also studied in the presence of a catalyst (HZSM-5 zeolite). The results indicated that increase of the degradation rate of PVC is first order with the HZSM-5 concentration up to 50 g/L and zero order at higher concentrations. The thermal degradation kinetics of PVC in the presence of 50 g/L of the catalyst was studied at various temperatures. The temperature dependency of the rate coefficient was used to calculate the activation energy (21.5 kcal/mol). This is consistent with the observation that the presence of a catalyst generally decreases the activation energy and promotes degradation. (C) 2002 John Wiley Sons, Inc.
Resumo:
Determination of the swelling pressure of montmorillonitic clays is required in many situations concerned with stability problems of foundations, retaining walls, slope stability of embankments and excavations in expansive soils. Recently expansive soils such as bentonite have been used as a mixture backfill material, for example as backfill material for nuclear waste disposal systems, for which a knowledge of the swelling pressure is desirable. This is the pressure required to keep the clay-water system at the required void ratio when it is allowed to absorb water or electrolyte. If the pressure is less than the swelling pressure, volume expansion occurs; if the pressure is more than the swelling pressure, volume compression occurs. Because of isomorphous substitutions in the crystal lattice, in general the clay particles carry negative charges at the surfaces of the platelets. Exchangeable cations in the clay media are attracted to these negative charges, but this attraction is opposed by the tendency of ions to be distributed. As a result, an electric diffuse double layer is formed (Gouy, 1910).
Resumo:
Several variants of hydrated sodium cadmium bisulfate, Na(2)Cd(2)(SO(4))(3) center dot 3H(2)O, Na(2)Cd(SO(4))(2) center dot 2H(2)O, and Na(2)Cd(SO(4))(2) center dot 4H(2)O have been synthesized, and their thermal properties followed by phase transitions have been invesigated. The formation of these phases depends on the stochiometry and the time taken for crystallization from water. Na(2)Cd(2)(SO(4))(3)center dot 3H(2)O, which crystallizes in the trigonal system, space group P3c, is grown from the aqueous solution in about four weeks. The krohnkite type mineral Na(2)Cd(SO(4))(2) center dot 2H(2)O and the mineral astrakhanite, also known as blodite, Na(2)Cd (SO(4))(2)center dot 4H(2)O, crystallize concomittantly in about 24 weeks. Both these minerals belong to the monoclinic system(space group P2(1)/c). Na(2)Cd(2)(SO(4))(3)center dot 3H(2)O loses water completely when heated to 250 degrees C and transforms to a dehydrated phase (cubic system, space group I (4) over bar 3d) whose structure has been established using ab initio powder diffration techniques. Na(2)Cd(SO(4))(2)center dot 2H(2)O transforms to alpha-Na(2)Cd(SO(4))(2) (space group C2/c) on heating to 150 degrees C which is a known high ionic conductor and remains intact over prolonged periods of exposure to moisture (over six months). However, when alpha-Na(2)Cd(SO(4))(2) is heated to 570 degrees C followed by sudden quenching in liquid nitrogen beta-Na(2)Cd(SO(4))(2) (P2(1)/c) is formed. beta-Na(2)Cd(SO(4))(2) takes up water from the atmosphere and gets converted completely to the krohnkite type mineral in about four weeks. Further, beta-Na(2)Cd(SO(4))(2) has a conductivity behavior comparable to the a-form up to 280 degrees C, the temperature required for the transformation of the beta- to alpha-form. These experiments demonstrate the possibility of utilizing the abundantly available mineral sources as precursors to design materials with special properties.
Polymerization of pyrrole and processing of the resulting polypyrrole as blends with plasticised PVC
Resumo:
Polypyrrole was synthesized by chemical oxidation of pyrrole in water containing various sulphonic acids like toluene sulphonic acid (TSA), sulphosalicylic acid (SSA), and camphor sulphonic acid (CSA), as well as a combination of each sulphonic acid with sodium dodecyl benzene sulphonate (NaDBS) to investigate the effect of doping on conductivity, yield, and processability of the conducting polymer. Free-standing blend films of polypyrrole and plasticized polyvinyl chloride (PVC) were obtained by casting an homogeneous suspension of the two polymers in tetrahydrofuran. The maximum conductivity of the blend film is similar to 0.3 S/cm, corresponding to a weight fraction of 0.16 w/w polypyrrole. The blend film is semiconducting in the range 300-10 K. A TG-DTA scan indicates the blend film to be amorphous with a stepwise decomposition process similar to pristine PVC. The choice of a dual dopant system during synthesis and the plasticised polymer during subsequent processing were keys to obtaining homogeneous high-quality films. (C) 2001 John Wiley & Sons, Inc.
Resumo:
Azophenol complexes of formulation [(η6-p-cymene)RuCl(Ln)] (1–6, n=1–6) were prepared by two synthetic methods involving either an oxygen insertion to the Ru---C bond in cycloruthenated precursors forming complexes 1 and 2 or from the reaction of [{(η6-p-cymene)RuCl}2(μ-Cl)2] with azophenol ligands (HL3–HL6) in the presence of sodium carbonate in CH2Cl2. The molecular structure of the 1-(phenylazo)-2-naphthol complex has been determined by X-ray crystallography. The complex has a η6-p-cymene group, a chloride and a bidentate N,O-donor azophenol ligand. The complexes have been characterized from NMR spectral data. The catalytic activity of the complexes has been studied for the conversion of acetophenone to the corresponding alcohol in the presence of KOH and isopropanol. Complexes 4 and 6 having a methoxy group attached to the ortho-position of the phenylazo moiety and 2 with a methyl group in the meta-position of the phenolic moiety show high percentage conversion (>84%).
Resumo:
Type II diabetes mellitus is a chronic metabolic disorder that can lead to serious cardiovascular, renal, neurologic, and retinal complications. While several drugs are currently prescribed to treat type II diabetes, their efficacy is limited by mechanism-related side effects (weight gain, hypoglycemia, gastrointestinal distress), inadequate efficacy for use as monotherapy, and the development of tolerance to the agents. Consequently, combination therapies are frequently employed to effectively regulate blood glucose levels. We have focused on the mitochondrial sodium-calcium exchanger (mNCE) as a novel target for diabetes drug discovery. We have proposed that inhibition of the mNCE can be used to regulate calcium flux across the mitochondrial membrane, thereby enhancing mitochondrial oxidative metabolism, which in turn enhances glucose-stimulated insulin secretion (GSIS) in the pancreatic beta-cell. In this paper, we report the facile synthesis of benzothiazepines and derivatives by S-alkylation using 2-aminobenzhydrols. The syntheses of other bicyclic analogues based on benzothiazepine, benzothiazecine, benzodiazecine, and benzodiazepine templates are also described. These compounds have been evaluated for their inhibition of mNCE activity, and the results from the structure-activity relationship (SAR) studies are discussed.