838 resultados para Slip casting
Resumo:
Entre os fatores que podem influenciar o desempenho de tração do trator agrícola, destacam-se a pressão de inflação e a carga sobre o rodado motriz. Neste trabalho, o objetivo foi avaliar, em situação de campo, a influência dos fatores inflação (sob quatro níveis) e carga sobre o rodado motriz (sob quatro níveis), combinados com e sem o uso da tração dianteira auxiliar. O experimento, totalizando 32 tratamentos com três repetições, foi distribuído em blocos ao acaso. O trator estudado foi submetido a uma força de tração constante na barra de tração, imposta por outro trator. Os resultados evidenciaram a influência significativa da lastragem nos parâmetros patinagem e coeficiente de tração, que aumentaram com a redução da carga sobre o rodado. A pressão de inflação influiu significativamente nos parâmetros patinagem, velocidade de deslocamento e potência na barra, sem no entanto apresentar tendência de comportamento. O uso da tração dianteira auxiliar mostrou vantagens significativas em relação aos mesmos parâmetros anteriores. A interação dos fatores pressão de inflação e carga sobre o rodado mostrou que determinadas combinações de pressão foram mais favoráveis para o desenvolvimento de maior velocidade e menor patinagem. As características relacionadas ao desempenho do motor (consumo horário e rotação do motor) não foram afetadas por nenhum dos fatores e/ou suas interações.
Resumo:
We report optical and morphological properties of poly(2-methoxy-5-hexyloxy-p-phenylenevinylene) (OC1OC6-PPV) films processed by casting, spin-coating (SC) and Langmuir-Blodgett (LB) techniques. The absorption spectra are practically the same, with an absorption maximum at approximately at 500 nm. For the photoluminescence (PL) spectra at low temperature (T=10K), a small but significant difference was noted in the cast film, in comparison with the LB and SC films. The zero-phonon transition shifted from 609 nm for the LB film to 615 and 621 nm for the SC and cast films, respectively. At room temperature, the PL spectra are similar for all films, and blue shifted by ca. 25 nm in comparison with the spectra at low temperature due to thermal disorder. Using atomic force microscopy (AFM) we inferred that the distinctive behavior of the cast film, probably associated with structural defects, is related to the large thickness of this film. The surface roughness, which was surprisingly higher for the LB film, apparently played no role in the emission properties of OC1OC6-PPV films.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
An investigation has been conducted to examine the morphological influence on fatigue life of low carbon steel with dual phase microstructure. The results showed that dual-phase microstructure, composed by ferrite and martensite had superior symmetrical bending fatigue strength when compared with ferrite-pearlite steel. Through those tests, evidences of different mechanisms were verified (such as ferrite cyclic hardening, slip band formation and beginning of crack nucleation and propagation). Based on the fatigue tests results, various mechanisms stages were discussed associated with different microstructure morphology. Copyright (C) 1996 Published by Elsevier B.V. Limited.
Resumo:
Tungstate fluorophosphate glasses of good optical quality were synthesized by fusion of the components and casting under air atmosphere. The absorption spectra from near-infrared to visible were obtained and the Judd-Ofelt parameters determined from the absorption bands. Transition probabilities, excited state lifetimes and transition branching ratios, were, determined from the measurements. Pumping with a 354.7 nm beam from a pulsed laser. resulted in emission at 450 nm. due to transition D-1(2)-->F-3(4) in Tm3+ ions and a broadband emission centered at approximate to 550 nm attributed to the glass matrix. When pumping at 650 nm, two emission bands at 450 nm (D-1(2)-->F-3(4)) and at 790 nm (H-3(4)-->H-3(6)) were observed. Excitation spectra were also obtained in order to understand the origin of both emissions. Theoretical and experimental lifetimes were determined and,the results were explained in terms of multiphonon relaxation. (C) 2003 American Institute of Physics.
Resumo:
The properties of edible films are influenced by several factors, including thickness. The purpose of this paper was to study the influence of thickness on the viscoelasticity properties, water vapor permeability, color and opacity of cassava starch edible films. These films were prepared by a casting technique, the film-forming solutions were 1, 2, 3 and 4% (w/v) of starch, heated to 70degreesC. Different thicknesses were obtained by putting 15 to 70 g of each solution on plexiglass plates. After drying at 30degreesC and ambient relative humidity, these samples were placed for 6 days at RH of 75%, at 22degreesC. The sample thicknesses were determined by a digital micrometer (+/-0.001 mm), as the average of nine different points. The viscoelasticity properties were determined by stress relaxation tests with a texture analyser TA.XT2i (SMS), being applied the Burgers model of four parameters. The water vapor permeability was determined with a gravimetric method, and color and opacity were determined using a Miniscan XE colorimeter, operated according to the Hunterlab method. All the tests were carried out in duplicate at 22degreesC. Practically, the four visco-elasticity properties calculated by the Burgers model had the same behavior, increasing with the thickness of all films, according to a power law model. The water vapor permeability and the color difference increased linearly with the thickness (0.013-0.144 mm) of all films prepared with solution of 1 to 4% of starch. on the other hand, the effect of the variation of the thickness over the opacity, was more important in the films with 1 and 2% of starch. It can be concluded that the control of the thickness in the elaboration of starch films by the casting technique is of extreme importance.
Resumo:
The colloidal route of the sol-gel process was used to prepare supported SnO2 membranes. The influence of the sol and monoelectrolyte concentrations on the formation of the gel layer by sol-casting on the top of macroporous alpha-Al2O3 support was described. The stability of the colloidal suspension as a function of the concentrations was analyzed from creep-recovery measurements. The calcined supported membranes were characterized by nitrogen adsorption-desorption isotherms and scanning electron microscopy. The set of results show that homogeneous membrane layers containing the smallest quantity of cracks are formed in a critical interval of sol (1.01 less than or equal to[SnO2]less than or equal to 1.4 M) and electrolyte (2.O less than or equal to[Cl-]less than or equal to 4.0 mM) concentrations. The samples prepared from concentrated suspensions present a lot of interconnected cracks which favors the peeling of the coated layer. The membranes have pores of average diameter of about 1 nm.
Resumo:
In this paper a piezoelectric composite membranes were developed for charge generator to promoter bone regeneration on defects sites. Is known that the osteogenesis process is induced by interactions between biological mechanisms and electrical phenomena. The membranes were prepared by mixing Barium Titanate (BT) powders and PVDF-TrFE (PVDF:TrFE = 60:40 mol%) on dimethylformamide medium. This precursor solution was dried and crystallized at 100degreesC for 12 hours. Composites membranes were obtained by following methods: solvent casting (SC), spincoating (SP), solvent extraction by water addition (WS) and hot pressing (HP).The microstructural analysis performed by SEM showed connectivity type 3-0 and 3-1 with high homogeneity for samples of ceramic volume fraction major than 0.50. Powder agglomerates within the polymer matrix was evidenced were observed for composites with the BT volume fraction major than 40%. The composite of ceramic fraction of 0.55 presented the best values of remanent polarization (similar to33 muC/cm(2)), but the flexibility of these composites with the larger ceramic fraction was significantly affected.For in vivo evaluation PVDF-TrFE/BT 90/10 membranes with 3cm larger were longitudinally implanted under tibiae of male rabbit. After 21 days the animals were sacrificed. By histological analyses were observed neo formed bone with a high mitotic activity. In the interface bone-membrane was evidenced a pronounced callus formation. These results encourage further applications of these membranes in bone-repair process.
Resumo:
Ferric and copper hexacyanoferrates (PB and CuHCF, respectively) were electrodeposited on glassy carbon electrodes providing a suitable catalytic surface for the amperometric detection of hydrogen peroxide. Additionally glucose oxidase was immobilized on top of these electrodes to form glucose biosensors. The biosensors were made by casting glucose oxidase-Nafion layers onto the surface of the modified electrodes. The operational stability of the films and the biosensors were evaluated by injecting a standard solution (5 mu M H2O2 for PB, 5 mM H2O2 for CuHCF and 1.5 mM glucose for both) over 5-10 h in a now-injection system with the electrodes polarized at - 50 (PB) and -200 mV (CuHCF) versus Ag/AgCl, respectively. The glucose biosensors demonstrated suitability for glucose determination: 0.0-2.5 mM (R-2 = 0.9977) for PB and 0.0-10 mM (R-2 = 0.9927) for CuHCF, respectively. The visualization of the redox catalyst modifiers (PB and CuHCF films) was presented by scanning electron micrographs. (C) 2000 Elsevier B.V. B.V. All rights reserved.
Resumo:
The conditions for processing and doping of blends of poly(o-alkoxyaniline)s and poly(vinylidene fluoride) were investigated. Flexible, free-standing and stretchable films of blends of various compositions were obtained by casting. A low percolation threshold was observed with the onset of conductivity at low polyalkoxyaniline contents (i.e. 5%). Interestingly, these blends displayed electrochromism with colour changes similar to those of the parent conducting polymer, as observed from cyclic voltammetry measurements. This behaviour is seen even for low contents of the conducting polymer, indicating that a continuous conducting pathway, which is capable of exchanging charge, is formed within the insulating matrix.
Resumo:
Blends possessing the elastomeric properties of natural rubber (NR) and the conducting properties of conducting polymer (polyaniline, PANI) were obtained, which are promising for further application in deformation sensors. Blends containing 20% (v/v) of PANI in 80% of NR latex were fabricated by casting in the form of free-standing films and treated either with HCl or with corona discharge, which lead PANI to its conducting state (doping process). Characterization was carried out by Raman spectroscopy, d.c. conductivity and thermogravimetric analysis. Evidence for chemical interaction between PANI and NR was observed, which allowed the conclusion that the NR latex itself is able partially to induce both the primary doping of PANI (by protonation) and the secondary doping of PANI (by changing the chain conformation). Further improvement in the primary doping could be obtained for the blends either by corona discharge or by exposing them to HCl the electrical conductivity reached in the blends was dependent on the doping conditions used, as observed by Raman scattering. Copyright (C) 2003 John Wiley Sons, Ltd.
Resumo:
Sodium phosphoniobate glasses with the composition (mol%) 75NaPO(3)-25Nb(2)O(5) and containing 2 mol% Yb3+ and x mol% Er3+ (0.01 <= x <= 2) were prepared using the conventional melting/casting process. Er3+ emission at 1.5 mu m and infrared-to-visible upconversion emission, upon excitation at 976 nm, are evaluated as a function of the Er3+ concentration. For the lowest Er3+ content, 1.5 mu m emission quantum efficiency was 90%. Increasing the Er3+ concentration up to 2 mol%, the emission quantum efficiency was observed to decrease to 37% due to concentration quenching. The green and red upconversion emission intensity ratio was studied as a function of Yb3+ co-doping and the Er3+-Er3+ energy transfer processes. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Objective. The aim of this study was to evaluate the castability of CP titanium and Ti-6Al-4V alloy castings into Rematitan Plus investment at three different mold temperatures.Methods. A nylon mesh pattern (20 mm with 64 squares and wire of 0.7 mm in diameter) was used for the castability testing. Initially, an image of the wax pattern was obtained by means of a digital camera and the total extension of filaments (mm) was then measured, using the Leica Qwin image analysis system. The mesh sprued was placed in the Rematitan Plus investment material and the castings were made in a Discovery Plasma machine at three different mold temperatures: 430 degrees C (control group), 480 degrees C or 530'C. Ten castings were made for each temperature. The images of the castings were analyzed (Leica Qwin) and the castability index determined by the number of the completely cast segments as a percentage of the wax pattern. Data were analyzed by two-way ANOVA and Tukey's multiple comparison test (a = 0.05) using materials and temperatures as discriminating variables.Results. The Ti-6Al-4V alloy (60.86%) presented a better castability index than CP Ti (48.44%) (p < 0.000001). For CP Ti, the temperature of 530 degrees C (23.96%) presented better castability than at other temperatures, 480 degrees C (14.66%) and 430 degrees C (12.54%), with no difference between them (p < 0.001). For Ti-6Al-4V alloy, there was a statistically significant difference among the three temperatures: 530 degrees C (28.36%) > 480 degrees C (19.66%) > 430 degrees C (15.97%) (p < 0.002).Significance. Within the limitations of this study, the increase in the mold temperature of the Rematitan Plus investment resulted in a better castability index for both materials, and Ti-6Al-4V presented a better castability index than CP Ti. (c) 2005 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Statement of problem. There are few studies on titanium casting shrinkage, and phosphate-bonded investments for titanium casting have not produced appropriate marginal fit.Purpose. The purpose of this study was to determine the thermal shrinkage of titanium and the setting and thermal expansion of 3 phosphate-bonded investments.Material and methods. The thermal shrinkage between the melting temperature and room temperature was calculated using a titanium thermal expansion coefficient. The thermal and setting expansion were measured for 3 phosphate bonded investments: Rematitan Plus (RP) specific for titanium, Rema Exakt (RE), and Castorit Super C (CA), using different special liquid concentrations (100%, 75%, and 50%). Setting expansion was measured for cylindrical specimens 50 mm long x 8 mm in diameter with a transducer. The heating and cooling curves were obtained with a dilatometer (DIL 402 PC). The total expansion curve was drawn using software, and temperatures to obtain expansion equivalent to titanium casting shrinkage were determined (n=5). In addition, the total expansion of the control group (RP at 430 degrees C) was measured, as well as the temperatures at which the other groups achieved equivalent total expansion (n=5). Data were analyzed by 1-way ANOVA and the Tukey HSD test (alpha=.05).Results. Titanium casting shrinkage was estimated as 1.55%. RP did not achieve this expansion. RE achieved expansion of 1.55% only with a special liquid concentration of 100% at 594 degrees C. CA with all special liquid concentrations attained this expansion (351 degrees C to 572 degrees C). Total expansion of the control group was 0.86%, and the other groups reached that expansion within the range of 70 degrees C to 360 degrees C.Conclusions. Only RE and CA demonstrated sufficient expansion to compensate for titanium casting shrinkage. All groups reached total expansion equivalent to that of the control group at significantly lower temperatures.
Resumo:
Blends of poly(o-methoxyaniline) - POMA - and poly(vinylidene fluoride) - PVDF - of various compositions were prepared from organic solvent solutions. Flexible, free-standing and stretchable films were obtained by casting, which were characterized by conductivity measurements, electron microscopy and differential scanning calorimetry. As expected, the blends conductivity increases with increasing contents of the conducting polymer. The onset of the conductivity at low contents of conducting polymer indicates a low percolation threshold for the blends. Despite the presence of the conductive host, the blends displayed the crystalline spherulitic morphology and the beta-phase characteristic of pure PVDF. This morphology appears to be destroyed, however, if the film is stretched by zone-drawing.