960 resultados para Single-molecule detection


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Development of mass spectrometry techniques to detect protein oxidation, which contributes to signalling and inflammation, is important. Label-free approaches have the advantage of reduced sample manipulation, but are challenging in complex samples owing to undirected analysis of large data sets using statistical search engines. To identify oxidised proteins in biological samples, we previously developed a targeted approach involving precursor ion scanning for diagnostic MS3 ions from oxidised residues. Here, we tested this approach for other oxidations, and compared it with an alternative approach involving the use of extracted ion chromatograms (XICs) generated from high-resolution MSMS data using very narrow mass windows. This accurate mass XIC data methodology was effective at identifying nitrotyrosine, chlorotyrosine, and oxidative deamination of lysine, and for tyrosine oxidations highlighted more modified peptide species than precursor ion scanning or statistical database searches. Although some false positive peaks still occurred in the XICs, these could be identified by comparative assessment of the peak intensities. The method has the advantage that a number of different modifications can be analysed simultaneously in a single LC-MSMS run. This article is part of a Special Issue entitled: Posttranslational Protein modifications in biology and Medicine. Biological significance: The use of accurate mass extracted product ion chromatograms to detect oxidised peptides could improve the identification of oxidatively damaged proteins in inflammatory conditions. © 2013 Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel device for the detection and characterisation of static magnetic fields is presented. It consists of a femtosecond laser inscribed fibre Bragg grating (FBG) that is incorporated into an optical fibre with a femtosecond laser micromachined slot. The symmetry of the fibre is broken by the micro-slot, producing non-uniform strain across the fibre cross section. The sensing region is coated with Terfenol-D making the device sensitive to static magnetic fields, whereas the symmetry breaking results in a vectorial sensor for the detection of magnetic fields as low as 0.046 mT with a resolution of ±0.3mT in transmission and ±0.7mT in reflection. The sensor output is directly wavelength encoded from the FBG filtering, leading to simple demodulation through the monitoring of wavelength shifts that result as the fibre structure changes shape in response to the external magnetic field. The use of a femtosecond laser to both inscribe the FBG and micro-machine the slot in a single stage, prior to coating the device, significantly simplifies the sensor fabrication.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel device for the detection and characterisation of static magnetic fields is presented. It consists of a femtosecond laser inscribed fibre Bragg grating (FBG) that is incorporated into an optical fibre with a femtosecond laser micromachined slot. The symmetry of the fibre is broken by the micro-slot, producing non-uniform strain across the fibre cross section. The sensing region is coated with Terfenol-D making the device sensitive to static magnetic fields, whereas the symmetry breaking results in a vectorial sensor for the detection of magnetic fields as low as 0.046 mT with a resolution of ±0.3mT in transmission and ±0.7mT in reflection. The sensor output is directly wavelength encoded from the FBG filtering, leading to simple demodulation through the monitoring of wavelength shifts that result as the fibre structure changes shape in response to the external magnetic field. The use of a femtosecond laser to both inscribe the FBG and micro-machine the slot in a single stage, prior to coating the device, significantly simplifies the sensor fabrication.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Visual field assessment is a core component of glaucoma diagnosis and monitoring, and the Standard Automated Perimetry (SAP) test is considered up until this moment, the gold standard of visual field assessment. Although SAP is a subjective assessment and has many pitfalls, it is being constantly used in the diagnosis of visual field loss in glaucoma. Multifocal visual evoked potential (mfVEP) is a newly introduced method used for visual field assessment objectively. Several analysis protocols have been tested to identify early visual field losses in glaucoma patients using the mfVEP technique, some were successful in detection of field defects, which were comparable to the standard SAP visual field assessment, and others were not very informative and needed more adjustment and research work. In this study, we implemented a novel analysis approach and evaluated its validity and whether it could be used effectively for early detection of visual field defects in glaucoma. OBJECTIVES: The purpose of this study is to examine the effectiveness of a new analysis method in the Multi-Focal Visual Evoked Potential (mfVEP) when it is used for the objective assessment of the visual field in glaucoma patients, compared to the gold standard technique. METHODS: 3 groups were tested in this study; normal controls (38 eyes), glaucoma patients (36 eyes) and glaucoma suspect patients (38 eyes). All subjects had a two standard Humphrey visual field HFA test 24-2 and a single mfVEP test undertaken in one session. Analysis of the mfVEP results was done using the new analysis protocol; the Hemifield Sector Analysis HSA protocol. Analysis of the HFA was done using the standard grading system. RESULTS: Analysis of mfVEP results showed that there was a statistically significant difference between the 3 groups in the mean signal to noise ratio SNR (ANOVA p<0.001 with a 95% CI). The difference between superior and inferior hemispheres in all subjects were all statistically significant in the glaucoma patient group 11/11 sectors (t-test p<0.001), partially significant 5/11 (t-test p<0.01) and no statistical difference between most sectors in normal group (only 1/11 was significant) (t-test p<0.9). sensitivity and specificity of the HAS protocol in detecting glaucoma was 97% and 86% respectively, while for glaucoma suspect were 89% and 79%. DISCUSSION: The results showed that the new analysis protocol was able to confirm already existing field defects detected by standard HFA, was able to differentiate between the 3 study groups with a clear distinction between normal and patients with suspected glaucoma; however the distinction between normal and glaucoma patients was especially clear and significant. CONCLUSION: The new HSA protocol used in the mfVEP testing can be used to detect glaucomatous visual field defects in both glaucoma and glaucoma suspect patient. Using this protocol can provide information about focal visual field differences across the horizontal midline, which can be utilized to differentiate between glaucoma and normal subjects. Sensitivity and specificity of the mfVEP test showed very promising results and correlated with other anatomical changes in glaucoma field loss.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: The purpose of this study was to examine the effectiveness of a new analysis method of mfVEP objective perimetry in the early detection of glaucomatous visual field defects compared to the gold standard technique. Methods and patients: Three groups were tested in this study; normal controls (38 eyes), glaucoma patients (36 eyes), and glaucoma suspect patients (38 eyes). All subjects underwent two standard 24-2 visual field tests: one with the Humphrey Field Analyzer and a single mfVEP test in one session. Analysis of the mfVEP results was carried out using the new analysis protocol: the hemifield sector analysis protocol. Results: Analysis of the mfVEP showed that the signal to noise ratio (SNR) difference between superior and inferior hemifields was statistically significant between the three groups (analysis of variance, P<0.001 with a 95% confidence interval, 2.82, 2.89 for normal group; 2.25, 2.29 for glaucoma suspect group; 1.67, 1.73 for glaucoma group). The difference between superior and inferior hemifield sectors and hemi-rings was statistically significant in 11/11 pair of sectors and hemi-rings in the glaucoma patients group (t-test P<0.001), statistically significant in 5/11 pairs of sectors and hemi-rings in the glaucoma suspect group (t-test P<0.01), and only 1/11 pair was statistically significant (t-test P<0.9). The sensitivity and specificity of the hemifield sector analysis protocol in detecting glaucoma was 97% and 86% respectively and 89% and 79% in glaucoma suspects. These results showed that the new analysis protocol was able to confirm existing visual field defects detected by standard perimetry, was able to differentiate between the three study groups with a clear distinction between normal patients and those with suspected glaucoma, and was able to detect early visual field changes not detected by standard perimetry. In addition, the distinction between normal and glaucoma patients was especially clear and significant using this analysis. Conclusion: The new hemifield sector analysis protocol used in mfVEP testing can be used to detect glaucomatous visual field defects in both glaucoma and glaucoma suspect patients. Using this protocol, it can provide information about focal visual field differences across the horizontal midline, which can be utilized to differentiate between glaucoma and normal subjects. The sensitivity and specificity of the mfVEP test showed very promising results and correlated with other anatomical changes in glaucomatous visual field loss. The intersector analysis protocol can detect early field changes not detected by the standard Humphrey Field Analyzer test. © 2013 Mousa et al, publisher and licensee Dove Medical Press Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background To determine the pharmacokinetics (PK) of a new i.v. formulation of paracetamol (Perfalgan) in children ≤15 yr of age. Methods After obtaining written informed consent, children under 16 yr of age were recruited to this study. Blood samples were obtained at 0, 15, 30 min, 1, 2, 4, 6, and 8 h after administration of a weight-dependent dose of i.v. paracetamol. Paracetamol concentration was measured using a validated high-performance liquid chromatographic assay with ultraviolet detection method, with a lower limit of quantification (LLOQ) of 900 pg on column and an intra-day coefficient of variation of 14.3% at the LLOQ. Population PK analysis was performed by non-linear mixed-effect modelling using NONMEM. Results One hundred and fifty-nine blood samples from 33 children aged 1.8–15 yr, weight 13.7–56 kg, were analysed. Data were best described by a two-compartment model. Only body weight as a covariate significantly improved the goodness of fit of the model. The final population models for paracetamol clearance (CL), V1 (central volume of distribution), Q (inter-compartmental clearance), and V2 (peripheral volume of distribution) were: 16.51×(WT/70)0.75, 28.4×(WT/70), 11.32×(WT/70)0.75, and 13.26×(WT/70), respectively (CL, Q in litres per hour, WT in kilograms, and V1 and V2 in litres). Conclusions In children aged 1.8–15 yr, the PK parameters for i.v. paracetamol were not influenced directly by age but were by total body weight and, using allometric size scaling, significantly affected the clearances (CL, Q) and volumes of distribution (V1, V2).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The glucagon-like peptide-1 receptor (GLP-1R) is a class B G protein-coupled receptor that has a critical role in the regulation of glucose homeostasis, principally through the regulation of insulin secretion. The receptor systemis highly complex, able to be activated by both endogenous [GLP-1(1-36)NH2, GLP-1(1-37), GLP-1(7-36)NH2, GLP-1(7-37), oxyntomodulin], and exogenous (exendin-4) peptides in addition to small-molecule allosteric agonists (compound 2 [6,7-dichloro-2-methylsulfonyl-3-tertbutylaminoquinoxaline], BETP [4-(3-benzyloxy)phenyl)-2-ethylsulfinyl-6-(trifluoromethyl)pyrimidine]). Furthermore, the GLP-1R is subject to single-nucleotide polymorphic variance, resulting in amino acid changes in the receptor protein. In this study, we investigated two polymorphic variants previously reported to impact peptidemediated receptor activity (M149) and small-molecule allostery (C333). These residues were mutated to a series of alternate amino acids, and their functionality was monitored across physiologically significant signaling pathways, including cAMP, extracellular signal-regulated kinase 1 and 2 phosphorylation, and intracellular Ca2+ mobilization, in addition to peptide binding and cell-surface expression. We observed that residue 149 is highly sensitive to mutation, with almost all peptide responses significantly attenuated at mutated receptors. However, most reductions in activity were able to be restored by the small-molecule allosteric agonist compound 2. Conversely, mutation of residue 333 had little impact on peptide-mediated receptor activation, but this activity could not be modulated by compound 2 to the same extent as that observed at the wild-type receptor. These results provide insight into the importance of residues 149 and 333 in peptide function and highlight the complexities of allosteric modulation within this receptor system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents an effective decision making system for leak detection based on multiple generalized linear models and clustering techniques. The training data for the proposed decision system is obtained by setting up an experimental pipeline fully operational distribution system. The system is also equipped with data logging for three variables; namely, inlet pressure, outlet pressure, and outlet flow. The experimental setup is designed such that multi-operational conditions of the distribution system, including multi pressure and multi flow can be obtained. We then statistically tested and showed that pressure and flow variables can be used as signature of leak under the designed multi-operational conditions. It is then shown that the detection of leakages based on the training and testing of the proposed multi model decision system with pre data clustering, under multi operational conditions produces better recognition rates in comparison to the training based on the single model approach. This decision system is then equipped with the estimation of confidence limits and a method is proposed for using these confidence limits for obtaining more robust leakage recognition results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a study of the influence of dispersion induced phase noise for CO-OFDM systems using FFT multiplexing/IFFT demultiplexing techniques (software based). The software based system provides a method for a rigorous evaluation of the phase noise variance caused by Common Phase Error (CPE) and Inter-Carrier Interference (ICI) including - for the first time to our knowledge - in explicit form the effect of equalization enhanced phase noise (EEPN). This, in turns, leads to an analytic BER specification. Numerical results focus on a CO-OFDM system with 10-25 GS/s QPSK channel modulation. A worst case constellation configuration is identified for the phase noise influence and the resulting BER is compared to the BER of a conventional single channel QPSK system with the same capacity as the CO-OFDM implementation. Results are evaluated as a function of transmission distance. For both types of systems, the phase noise variance increases significantly with increasing transmission distance. For a total capacity of 400 (1000) Gbit/s, the transmission distance to have the BER < 10-2 for the worst case CO-OFDM design is less than 800 and 460 km, respectively, whereas for a single channel QPSK system it is less than 1400 and 560 km.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

CONCLUSIONS: The new HSA protocol used in the mfVEP testing can be applied to detect glaucomatous visual field defects in both glaucoma and glaucoma suspect patients. Using this protocol can provide information about focal visual field differences across the horizontal midline, which can be utilized to differentiate between glaucoma and normal subjects. Sensitivity and specificity of the mfVEP test showed very promising results and correlated with other anatomical changes in glaucoma field loss. PURPOSE: Multifocal visual evoked potential (mfVEP) is a newly introduced method used for objective visual field assessment. Several analysis protocols have been tested to identify early visual field losses in glaucoma patients using the mfVEP technique, some were successful in detection of field defects, which were comparable to the standard automated perimetry (SAP) visual field assessment, and others were not very informative and needed more adjustment and research work. In this study we implemented a novel analysis approach and evaluated its validity and whether it could be used effectively for early detection of visual field defects in glaucoma. METHODS: Three groups were tested in this study; normal controls (38 eyes), glaucoma patients (36 eyes) and glaucoma suspect patients (38 eyes). All subjects had a two standard Humphrey field analyzer (HFA) test 24-2 and a single mfVEP test undertaken in one session. Analysis of the mfVEP results was done using the new analysis protocol; the hemifield sector analysis (HSA) protocol. Analysis of the HFA was done using the standard grading system. RESULTS: Analysis of mfVEP results showed that there was a statistically significant difference between the three groups in the mean signal to noise ratio (ANOVA test, p < 0.001 with a 95% confidence interval). The difference between superior and inferior hemispheres in all subjects were statistically significant in the glaucoma patient group in all 11 sectors (t-test, p < 0.001), partially significant in 5 / 11 (t-test, p < 0.01), and no statistical difference in most sectors of the normal group (1 / 11 sectors was significant, t-test, p < 0.9). Sensitivity and specificity of the HSA protocol in detecting glaucoma was 97% and 86%, respectively, and for glaucoma suspect patients the values were 89% and 79%, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Power converters are a key, but vulnerable component in switched reluctance motor (SRM) drives. In this paper, a new fault diagnosis scheme for SRM converters is proposed based on the wavelet packet decomposition (WPD) with a dc-link current sensor. Open- and short-circuit faults of the power switches in an asymmetrical half-bridge converter are analyzed in details. In order to obtain the fault signature from the phase currents, two pulse-width modulation signals with phase shift are injected into the lower-switches of the converter to extract the excitation current, and the WPD algorithm is then applied to the detected currents for fault diagnosis. Moreover, a discrete degree of the wavelet packet node energy is chosen as the fault coefficient. The converter faults can be diagnosed and located directly by determining the changes in the discrete degree from the detected currents. The proposed scheme requires only one current sensor in the dc link, while conventional methods need one sensor for each phase or additional detection circuits. The experimental results on a 750-W three-phase SRM are presented to confirm the effectiveness of the proposed fault diagnosis scheme.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reliability of power converters is of crucial importance in switched reluctance motor drives used for safety-critical applications. Open-circuit faults in power converters will cause the motor to run in unbalanced states, and if left untreated, they will lead to damage to the motor and power modules, and even cause a catastrophic failure of the whole drive system. This study is focused on using a single current sensor to detect open-circuit faults accurately. An asymmetrical half-bridge converter is considered in this study and the faults of single-phase open and two-phase open are analysed. Three different bus positions are defined. On the basis of a fast Fourier transform algorithm with Blackman window interpolation, the bus current spectrums before and after open-circuit faults are analysed in details. Their fault characteristics are extracted accurately by the normalisations of the phase fundamental frequency component and double phase fundamental frequency component, and the fault characteristics of the three bus detection schemes are also compared. The open-circuit faults can be located by finding the relationship between the bus current and rotor position. The effectiveness of the proposed diagnosis method is validated by the simulation results and experimental tests.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Insulated gate bipolar transistor (IGBT) modules are important safety critical components in electrical power systems. Bond wire lift-off, a plastic deformation between wire bond and adjacent layers of a device caused by repeated power/thermal cycles, is the most common failure mechanism in IGBT modules. For the early detection and characterization of such failures, it is important to constantly detect or monitor the health state of IGBT modules, and the state of bond wires in particular. This paper introduces eddy current pulsed thermography (ECPT), a nondestructive evaluation technique, for the state detection and characterization of bond wire lift-off in IGBT modules. After the introduction of the experimental ECPT system, numerical simulation work is reported. The presented simulations are based on the 3-D electromagnetic-thermal coupling finite-element method and analyze transient temperature distribution within the bond wires. This paper illustrates the thermal patterns of bond wires using inductive heating with different wire statuses (lifted-off or well bonded) under two excitation conditions: nonuniform and uniform magnetic field excitations. Experimental results show that uniform excitation of healthy bonding wires, using a Helmholtz coil, provides the same eddy currents on each, while different eddy currents are seen on faulty wires. Both experimental and numerical results show that ECPT can be used for the detection and characterization of bond wires in power semiconductors through the analysis of the transient heating patterns of the wires. The main impact of this paper is that it is the first time electromagnetic induction thermography, so-called ECPT, has been employed on power/electronic devices. Because of its capability of contactless inspection of multiple wires in a single pass, and as such it opens a wide field of investigation in power/electronic devices for failure detection, performance characterization, and health monitoring.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phospholipid oxidation by adventitious damage generates a wide variety of products with potentially novel biological activities that can modulate inflammatory processes associated with various diseases. To understand the biological importance of oxidised phospholipids (OxPL) and their potential role as disease biomarkers requires precise information about the abundance of these compounds in cells and tissues. There are many chemiluminescence and spectrophotometric assays available for detecting oxidised phospholipids, but they all have some limitations. Mass spectrometry coupled with liquid chromatography is a powerful and sensitive approach that can provide detailed information about the oxidative lipidome, but challenges still remain. The aim of this work is to develop improved methods for detection of OxPLs by optimisation of chromatographic separation through testing several reverse phase columns and solvent systems, and using targeted mass spectrometry approaches. Initial experiments were carried out using oxidation products generated in vitro to optimise the chromatography separation parameters and mass spectrometry parameters. We have evaluated the chromatographic separation of oxidised phosphatidylcholines (OxPCs) and oxidised phosphatidylethanolamines (OXPEs) using C8, C18 and C30 reverse phase, polystyrene – divinylbenzene based monolithic and mixed – mode hydrophilic interaction (HILIC) columns, interfaced with mass spectrometry. Our results suggest that the monolithic column was best able to separate short chain OxPCs and OxPEs from long chain oxidised and native PCs and PEs. However, variation in charge of polar head groups and extreme diversity of oxidised species make analysis of several classes of OxPLs within one analytical run impractical. We evaluated and optimised the chromatographic separation of OxPLs by serially coupling two columns: HILIC and monolith column that provided us the larger coverage of OxPL species in a single analytical run.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Raster graphic ampelometric software was not exclusively developed for the estimation of leaf area, but also for the characterization of grapevine (Viti vinifera L.) leaves. The software was written in C-Hprogramming language, using the C-1-1- Builder 2007 for Windows 95-XP and Linux operation systems. It handles desktop-scanned images. On the image analysed with the GRA.LE.D., the user has to determine 11 points. These points are then connected and the distances between them calculated. The GRA.LE.D. software supports standard ampelometric measurements such as leaf area, angles between the veins and lengths of the veins. These measurements are recorded by the software and exported into plain ASCII text files for single or multiple samples. Twenty-two biometric data points of each leaf are identified by the GRA.LE.D. It presents the opportunity to statistically analyse experimental data, allows comparison of cultivars and enables graphic reconstruction of leaves using the Microsoft Excel Chart Wizard. The GRA. LE.D. was thoroughly calibrated and compared to other widely used instruments and methods such as photo-gravimetry, LiCor L0100, WinDIAS2.0 and ImageTool. By comparison, the GRA.LE.D. presented the most accurate measurements of leaf area, but the LiCor L0100 and the WinDIAS2.0 were faster, while the photo-gravimetric method proved to be the most time-consuming. The WinDIAS2.0 instrument was the least reliable. The GRA.LE.D. is uncomplicated, user-friendly, accurate, consistent, reliable and has wide practical application.