996 resultados para Shear Layers


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The rate and direction of regrowth of amorphous layers, created by self-implantation, in silicon-on-sapphire (SOS) have been studied using time resolved reflectivity (TRR) experiments performed simultaneously at two wavelengths. Regrowth of an amorphous layer towards the surface was observed in specimens implanted with 3 multiplied by (times) 10**1**5Si** plus /cm**2 at 50keV and regrowth of a buried amorphous layer, from a surface seed towards the sapphire, was observed in specimens implanted with 1 multiplied by (times) 10**1**5Si** plus /cm**2 at 175keV. Rapid isothermal heating to regrow the layers was performed in an electron beam annealing system. The combination of 514. 5nm and 632. 8nm wavelengths was found to be particularly useful for TRR studies since the high absorption in amorphous silicon, at the shorter wavelength, means that the TRR trace is not complicated by reflection from the silicon-sapphire interface until regrowth is nearly complete.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper outlines the development of the electron beam recrystallization approach to the formation of silicon-on-insulator layers. The technique of recrystallizing seeded layers by a line electron beam has been widely adopted. Present practice in electron beam recrystallization is reviewed, both from materials and process points of view. Applications of silicon-on-insulator substrates formed in this way are described, particularly in three-dimensional integration. © 1988.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In turbomachinery, a considerable proportion of the blade surface area can be covered by transitional boundary layers. This means that accurate prediction of the profile loss and boundary layer behavior in general depends on the accurate modeling of the transitional boundary layers, especially at low Reynolds numbers. This paper presents a model for determining the intermittency resulting from the unsteady transition caused by the passage of wakes over a blade surface. The model is founded on work by Emmons (1951) who showed that the intermittency could be calculated from a knowledge of the behavior of randomly formed turbulent spots. The model is used to calculate the development of the boundary layer on the rotor of a low Reynolds number single-stage turbine. The predictions are compared with experimental results obtained using surface-mounted hot-film anemometers and hot-wire traverses of the rotor midspan boundary layer at two different rotor-stator gaps. The validity and limitations of the model are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When two rough surfaces are loaded together it is well known that the area of true contact is very much smaller then the geometric area and that, consequently, local contact pressures are very much greater than the nominal value. If the asperities on each surface can be thought of as possessing smooth summits and each of the solids is elastically isotropic then the pressure distribution will consist of a series of small, but severe, Hertzian patches. However, if one of both of the surfaces in question is protected by a boundary layer then both the number and dimensions of these patches, and the form of the pressure distribution within them, will be modified. Recent experimental evidence from studies using both Atomic Force Microscopy and micro-tribometry suggests that boundary films produced by the action of commercial anti-wear additives, such as ZDTP, exhibit mechanical properties, which are affected by local values of pressure. These changes bring about further modifications to local conditions. These effects have been explored in a numerical model of rough surface contact and the implications for the mechanisms of surface distress and wear are discussed. © 2000 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We hypothesize that the impact of PCB desorption from resuspended sediments depends upon the intensity of the resuspension (which scales to bottom stress in the absence of organisms), the rate at which each congener desorbs (which depends on the size and hydrophobicity of the chemical, the relative amount of 'labile' and 'resistant' forms, and the size distribution of the suspended particles), and the residence time of the particles in the water column (which depends on the time-variable water column turbulence regime and the particle settling velocities). In order to accurately quantify the impact of PCB desorption from Hudson River sediments, we are conducting experiments that realistically mimic bottom shear stress and water column turbulence and rapidly measure PCB congener release. The objectives of this study are to measure the kinetics of PCB congener desorption from Hudson River sediments under realistic bottom shear and water column turbulence conditions and to quantify the impact of shear stress and contaminant aging on PCB desorption kinetics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The finite element method has been used to develop collapse mechanism maps for the shear response of sandwich panels with a stainless steel core comprising hollow struts. The core topology comprises either vertical tubes or inclined tubes in a pyramidal arrangement. The dependence of the elastic and plastic buckling modes upon core geometry is determined, and optimal geometric designs are obtained as a function of core density. For the hollow pyramidal core, strength depends primarily upon the relative density ρ̄ of the core with a weak dependence upon tube slenderness. At ρ̄ below about 3%, the tubes of the pyramidal core buckle plastically and the peak shear strength scales linearly with ρ̄. In contrast, at ρ̄ above 3%, the tubes do not buckle and a stable shear response is observed. The predictions of the current study are in excellent agreement with previous measurements on the shear strength of the hollow pyramidal core, and suggest that this core topology is attractive from the perspectives of both core strength and energy absorption. © 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: When fresh morselized graft is compacted, as in impaction bone-grafting for revision hip surgery, fat and marrow fluid is either exuded or trapped in the voids between particles. We hypothesized that the presence of incompressible fluid damps and resists compressive forces during impaction and prevents the graft particles from moving into a closer formation, thus reducing the graft strength. In addition, viscous fluid such as fat may act as an interparticle lubricant, thus reducing the interlocking of the particles. METHODS: We performed mechanical shear testing in the laboratory with use of fresh-frozen human femoral-head allografts that had been passed through different orthopaedic bone mills to produce graft of differing particle-size distributions (grading). RESULTS: After compaction of fresh graft, fat and marrow fluid continued to escape on application of normal loads. Washed graft, however, had little lubricating fluid and better contact between the particles, increasing the shear resistance. On mechanical testing, washed graft was significantly (p < 0.001) more resistant to shearing forces than fresh graft was. This feature was consistent for different bone mills that produced graft of different particle-size distributions and shear strengths. CONCLUSIONS: Removal of fat and marrow fluid from milled human allograft by washing the graft allows the production of stronger compacted graft that is more resistant to shear, which is the usual mode of failure. Further research into the optimum grading of particle sizes from bone mills is required.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: When fresh morselized graft is compacted, as in impaction bone-grafting for revision hip surgery, fat and marrow fluid is either exuded or trapped in the voids between particles. We hypothesized that the presence of incompressible fluid damps and resists compressive forces during impaction and prevents the graft particles from moving into a closer formation, thus reducing the graft strength. In addition, viscous fluid such as fat may act as an interparticle lubricant, thus reducing the interlocking of the particles. Methods: We performed mechanical shear testing in the laboratory with use of fresh-frozen human femoral-head allografts that had been passed through different orthopaedic bone mills to produce graft of differing particle-size distributions (grading). Results: After compaction of fresh graft, fat and marrow fluid continued to escape on application of normal loads. Washed graft, however, had little lubricating fluid and better contact between the particles, increasing the shear resistance. On mechanical testing, washed graft was significantly (p < 0.001) more resistant to shearing forces than fresh graft was. This feature was consistent for different bone mills that produced graft of different particle-size distributions and shear strengths. Conclusions: Removal of fat and marrow fluid from milled human allograft by washing the graft allows the production of stronger compacted graft that is more resistant to shear, which is the usual mode of failure. Further research into the optimum grading of particle sizes from bone mills is required. Clinical Relevance: Understanding the mechanical properties of milled human allograft is important when impaction grafting is used for mechanical support. A simple means of improving the mechanical strength of graft produced by currently available bone mills, including an intraoperative washing technique, is described.