996 resultados para Sensor integration
Resumo:
Polymeric materials that conduct electricity are highly interesting for fundamental studies and beneficial for modern applications in e.g. solar cells, organic field effect transistors (OFETs) as well as in chemical and bio‐sensing. Therefore, it is important to characterize this class of materials with a wide variety of methods. This work summarizes the use of electrochemistry also in combination with spectroscopic methods in synthesis and characterization of electrically conducting polymers and other π‐conjugated systems. The materials studied in this work are intended for organic electronic devices and chemical sensors. Additionally, an important part of the presented work, concerns rational approaches to the development of water‐based inks containing conducting particles. Electrochemical synthesis and electroactivity of conducting polymers can be greatly enhanced in room temperature ionic liquids (RTILs) in comparison to conventional electrolytes. Therefore, poly(para‐phyenylene) (PPP) was electrochemically synthesized in the two representative RTILs: bmimPF6 and bmiTf2N (imidazolium and pyrrolidinium‐based salts, respectively). It was found that the electrochemical synthesis of PPP was significantly enhanced in bmimPF6. Additionally, the results from doping studies of PPP films indicate improved electroactivity in bmimPF6 during oxidation (p‐doping) and in bmiTf2N in the case of reduction (n‐doping). These findings were supported by in situ infrared spectroscopy studies. Conducting poly(benzimidazobenzophenanthroline) (BBL) is a material which can provide relatively high field‐effect mobility of charge carriers in OFET devices. The main disadvantage of this n‐type semiconductor is its limited processability. Therefore in this work BBL was functionalized with poly(ethylene oxide) PEO, varying the length of side chains enabling water dispersions of the studied polymer. It was found that functionalization did not distract the electrochemical activity of the BBL backbone while the processability was improved significantly in comparison to conventional BBL. Another objective was to study highly processable poly(3,4‐ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) water‐based inks for controlled patterning scaled‐down to nearly a nanodomain with the intention to fabricate various chemical sensors. Developed PEDOT:PSS inks greatly improved printing of nanoarrays and with further modification with quaternary ammonium cations enabled fabrication of PEDOT:PSS‐based chemical sensors for lead (II) ions with enhanced adhesion and stability in aqueous environments. This opens new possibilities for development of PEDOT:PSS films that can be used in bio‐related applications. Polycyclic aromatic hydrocarbons (PAHs) are a broad group of π‐conjugated materials consisting of aromatic rings in the range from naphthalene to even hundred rings in one molecule. The research on this type of materials is intriguing, due to their interesting optical properties and resemblance of graphene. The objective was to use electrochemical synthesis to yield relatively large PAHs and fabricate electroactive films that could be used as template material in chemical sensors. Spectroscopic, electrochemical and electrical investigations evidence formation of highly stable films with fast redox response, consisting of molecules with 40 to 60 carbon atoms. Additionally, this approach in synthesis, starting from relatively small PAH molecules was successfully used in chemical sensor for lead (II).
Resumo:
The recent emergence of low-cost RGB-D sensors has brought new opportunities for robotics by providing affordable devices that can provide synchronized images with both color and depth information. In this thesis, recent work on pose estimation utilizing RGBD sensors is reviewed. Also, a pose recognition system for rigid objects using RGB-D data is implemented. The implementation uses half-edge primitives extracted from the RGB-D images for pose estimation. The system is based on the probabilistic object representation framework by Detry et al., which utilizes Nonparametric Belief Propagation for pose inference. Experiments are performed on household objects to evaluate the performance and robustness of the system.
Resumo:
Torrefaction is one of the pretreatment technologies to enhance the fuel characteristics of biomass. The efficient and continuous operation of a torrefaction reactor, in the commercial scale, demands a secure biomass supply, in addition to adequate source of heat. Biorefinery plants or biomass-fuelled steam power plants have the potential to integrate with the torrefaction reactor to exchange heat and mass, using available infrastructure and energy sources. The technical feasibility of this integration is examined in this study. A new model for the torrefaction process is introduced and verified by the available experimental data. The torrefaction model is then integrated in different steam power plants to simulate possible mass and energy exchange between the reactor and the plants. The performance of the integrated plant is investigated for different configurations and the results are compared.
Resumo:
Field trial was conducted with the aim of utilizing allelopathic crop residues to reduce the use of synthetic herbicides in broad bean (Vicia faba) fields. Sunflower residue at 600 and 1,400 g m-2 and Treflan (trifluralin) at 50, 75 and 100% of recommended dose were incorporated into the soil alone or in combination with each other. Untreated plots were maintained as a control. Herbicide application in plots amended with sunflower residue had the least total weed count and biomass, which was even better than herbicide used alone. Integration of recommended dose of Treflan with sunflower residue at 1,400 g m-² produced maximum (987.5 g m-2) aboveground biomass of broad bean, which was 74 and 36% higher than control and recommended herbicide dose applied alone, respectively. Combination of herbicide and sunflower residue appeared to better enhance pod number and yield per unit area than herbicide alone. Application of 50% dose of Treflan in plots amended with sunflower residue resulted in similar yield advantage as was noticed with 100% herbicide dose. Chromatographic analysis of residue-infested field soil indicated the presence of several phytotoxic compounds of phenolic nature. Periodic data revealed that maximum suppression in weed density and dry weight synchronized with peak values of phytotoxins observed 4 weeks after incorporation of sunflower residues. Integration of sunflower residues with lower herbicide rates can produce effective weed suppression without compromising yield as a feasible and environmentally sound approach in broad bean fields.
Resumo:
Poster at Open Repositories 2014, Helsinki, Finland, June 9-13, 2014
Resumo:
Presentation at Open Repositories 2014, Helsinki, Finland, June 9-13, 2014
Resumo:
Poster at Open Repositories 2014, Helsinki, Finland, June 9-13, 2014
Resumo:
Environmental issues, including global warming, have been serious challenges realized worldwide, and they have become particularly important for the iron and steel manufacturers during the last decades. Many sites has been shut down in developed countries due to environmental regulation and pollution prevention while a large number of production plants have been established in developing countries which has changed the economy of this business. Sustainable development is a concept, which today affects economic growth, environmental protection, and social progress in setting up the basis for future ecosystem. A sustainable headway may attempt to preserve natural resources, recycle and reuse materials, prevent pollution, enhance yield and increase profitability. To achieve these objectives numerous alternatives should be examined in the sustainable process design. Conventional engineering work cannot address all of these substitutes effectively and efficiently to find an optimal route of processing. A systematic framework is needed as a tool to guide designers to make decisions based on overall concepts of the system, identifying the key bottlenecks and opportunities, which lead to an optimal design and operation of the systems. Since the 1980s, researchers have made big efforts to develop tools for what today is referred to as Process Integration. Advanced mathematics has been used in simulation models to evaluate various available alternatives considering physical, economic and environmental constraints. Improvements on feed material and operation, competitive energy market, environmental restrictions and the role of Nordic steelworks as energy supplier (electricity and district heat) make a great motivation behind integration among industries toward more sustainable operation, which could increase the overall energy efficiency and decrease environmental impacts. In this study, through different steps a model is developed for primary steelmaking, with the Finnish steel sector as a reference, to evaluate future operation concepts of a steelmaking site regarding sustainability. The research started by potential study on increasing energy efficiency and carbon dioxide reduction due to integration of steelworks with chemical plants for possible utilization of available off-gases in the system as chemical products. These off-gases from blast furnace, basic oxygen furnace and coke oven furnace are mainly contained of carbon monoxide, carbon dioxide, hydrogen, nitrogen and partially methane (in coke oven gas) and have proportionally low heating value but are currently used as fuel within these industries. Nonlinear optimization technique is used to assess integration with methanol plant under novel blast furnace technologies and (partially) substitution of coal with other reducing agents and fuels such as heavy oil, natural gas and biomass in the system. Technical aspect of integration and its effect on blast furnace operation regardless of capital expenditure of new operational units are studied to evaluate feasibility of the idea behind the research. Later on the concept of polygeneration system added and a superstructure generated with alternative routes for off-gases pretreatment and further utilization on a polygeneration system producing electricity, district heat and methanol. (Vacuum) pressure swing adsorption, membrane technology and chemical absorption for gas separation; partial oxidation, carbon dioxide and steam methane reforming for methane gasification; gas and liquid phase methanol synthesis are the main alternative process units considered in the superstructure. Due to high degree of integration in process synthesis, and optimization techniques, equation oriented modeling is chosen as an alternative and effective strategy to previous sequential modelling for process analysis to investigate suggested superstructure. A mixed integer nonlinear programming is developed to study behavior of the integrated system under different economic and environmental scenarios. Net present value and specific carbon dioxide emission is taken to compare economic and environmental aspects of integrated system respectively for different fuel systems, alternative blast furnace reductants, implementation of new blast furnace technologies, and carbon dioxide emission penalties. Sensitivity analysis, carbon distribution and the effect of external seasonal energy demand is investigated with different optimization techniques. This tool can provide useful information concerning techno-environmental and economic aspects for decision-making and estimate optimal operational condition of current and future primary steelmaking under alternative scenarios. The results of the work have demonstrated that it is possible in the future to develop steelmaking towards more sustainable operation.
Resumo:
Digital business ecosystems (DBE) are becoming an increasingly popular concept for modelling and building distributed systems in heterogeneous, decentralized and open environments. Information- and communication technology (ICT) enabled business solutions have created an opportunity for automated business relations and transactions. The deployment of ICT in business-to-business (B2B) integration seeks to improve competitiveness by establishing real-time information and offering better information visibility to business ecosystem actors. The products, components and raw material flows in supply chains are traditionally studied in logistics research. In this study, we expand the research to cover the processes parallel to the service and information flows as information logistics integration. In this thesis, we show how better integration and automation of information flows enhance the speed of processes and, thus, provide cost savings and other benefits for organizations. Investments in DBE are intended to add value through business automation and are key decisions in building up information logistics integration. Business solutions that build on automation are important sources of value in networks that promote and support business relations and transactions. Value is created through improved productivity and effectiveness when new, more efficient collaboration methods are discovered and integrated into DBE. Organizations, business networks and collaborations, even with competitors, form DBE in which information logistics integration has a significant role as a value driver. However, traditional economic and computing theories do not focus on digital business ecosystems as a separate form of organization, and they do not provide conceptual frameworks that can be used to explore digital business ecosystems as value drivers—combined internal management and external coordination mechanisms for information logistics integration are not the current practice of a company’s strategic process. In this thesis, we have developed and tested a framework to explore the digital business ecosystems developed and a coordination model for digital business ecosystem integration; moreover, we have analysed the value of information logistics integration. The research is based on a case study and on mixed methods, in which we use the Delphi method and Internetbased tools for idea generation and development. We conducted many interviews with key experts, which we recoded, transcribed and coded to find success factors. Qualitative analyses were based on a Monte Carlo simulation, which sought cost savings, and Real Option Valuation, which sought an optimal investment program for the ecosystem level. This study provides valuable knowledge regarding information logistics integration by utilizing a suitable business process information model for collaboration. An information model is based on the business process scenarios and on detailed transactions for the mapping and automation of product, service and information flows. The research results illustrate the current cap of understanding information logistics integration in a digital business ecosystem. Based on success factors, we were able to illustrate how specific coordination mechanisms related to network management and orchestration could be designed. We also pointed out the potential of information logistics integration in value creation. With the help of global standardization experts, we utilized the design of the core information model for B2B integration. We built this quantitative analysis by using the Monte Carlo-based simulation model and the Real Option Value model. This research covers relevant new research disciplines, such as information logistics integration and digital business ecosystems, in which the current literature needs to be improved. This research was executed by high-level experts and managers responsible for global business network B2B integration. However, the research was dominated by one industry domain, and therefore a more comprehensive exploration should be undertaken to cover a larger population of business sectors. Based on this research, the new quantitative survey could provide new possibilities to examine information logistics integration in digital business ecosystems. The value activities indicate that further studies should continue, especially with regard to the collaboration issues on integration, focusing on a user-centric approach. We should better understand how real-time information supports customer value creation by imbedding the information into the lifetime value of products and services. The aim of this research was to build competitive advantage through B2B integration to support a real-time economy. For practitioners, this research created several tools and concepts to improve value activities, information logistics integration design and management and orchestration models. Based on the results, the companies were able to better understand the formulation of the digital business ecosystem and the importance of joint efforts in collaboration. However, the challenge of incorporating this new knowledge into strategic processes in a multi-stakeholder environment remains. This challenge has been noted, and new projects have been established in pursuit of a real-time economy.
Resumo:
The main goal of this work is to clarify the idea of two thermochemical conversion processes of biomass - pyrolysis and torrefaction and to identify possible ways how and where exactly these processes can be integrated. Integration into CHP power plant process was chosen as one of the most promising ways. Multiple product development was determined by means of this integration concept. The analysis of the possible pros and cons was made based on some experimental data collected from the previous studies related to the topic of my work. In addition, one real integrated case was represented in the last part of the work. Finally, to highlight the main idea brief summarizing was done.
Resumo:
The main objective of this study was to find out the bases for innovation model formulation in an existing organization based on cases. Innovation processes can be analyzed based on their needs and based on their emphasis on the business model development or R&D. The research was conducted in energy sector within one company by utilizing its projects as cases for the study. It is typical for the field of business that development is slow, although the case company has put emphasis on its innovation efforts. Analysis was done by identifying the cases’ needs and comparing them. The results were that because of the variances in the needs of the cases, the applicability of innovation process models varies. It was discovered that by dividing the process into two phases, a uniform model could be composed. This model would fulfill the needs of the cases and potential future projects as well.
Resumo:
Recent advances in Information and Communication Technology (ICT), especially those related to the Internet of Things (IoT), are facilitating smart regions. Among many services that a smart region can offer, remote health monitoring is a typical application of IoT paradigm. It offers the ability to continuously monitor and collect health-related data from a person, and transmit the data to a remote entity (for example, a healthcare service provider) for further processing and knowledge extraction. An IoT-based remote health monitoring system can be beneficial in rural areas belonging to the smart region where people have limited access to regular healthcare services. The same system can be beneficial in urban areas where hospitals can be overcrowded and where it may take substantial time to avail healthcare. However, this system may generate a large amount of data. In order to realize an efficient IoT-based remote health monitoring system, it is imperative to study the network communication needs of such a system; in particular the bandwidth requirements and the volume of generated data. The thesis studies a commercial product for remote health monitoring in Skellefteå, Sweden. Based on the results obtained via the commercial product, the thesis identified the key network-related requirements of a typical remote health monitoring system in terms of real-time event update, bandwidth requirements and data generation. Furthermore, the thesis has proposed an architecture called IReHMo - an IoT-based remote health monitoring architecture. This architecture allows users to incorporate several types of IoT devices to extend the sensing capabilities of the system. Using IReHMo, several IoT communication protocols such as HTTP, MQTT and CoAP has been evaluated and compared against each other. Results showed that CoAP is the most efficient protocol to transmit small size healthcare data to the remote servers. The combination of IReHMo and CoAP significantly reduced the required bandwidth as well as the volume of generated data (up to 56 percent) compared to the commercial product. Finally, the thesis conducted a scalability analysis, to determine the feasibility of deploying the combination of IReHMo and CoAP in large numbers in regions in north Sweden.