920 resultados para Sensitive barrier
Immune cell migration across the blood–brain barrier: molecular mechanisms and therapeutic targeting
Resumo:
The endothelial blood–brain barrier (BBB) and the epithelial blood–cerebrospinal fluid barrier protect the CNS from the constantly changing milieu within the bloodstream. The BBB strictly controls immune cell entry into the CNS, which is rare under physiological conditions. During a variety of pathological conditions of the CNS, such as viral or bacterial infections, or during inflammatory diseases, such as multiple sclerosis, immunocompetent cells readily traverse the BBB and subsequently enter the CNS parenchyma. Most of the available information on immune cell entry into the CNS is derived from studying experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis. Consequently, our current knowledge on traffic signals mediating immune cell entry across the BBB during immunosurveillance and disease results mainly from experimental data in the EAE model. Therefore, a large part of this review summarizes these findings. Similarly, the potential benefits and risks associated with therapeutic targeting of immune cell trafficking across the BBB will be discussed in the context of multiple sclerosis, since elucidation of the molecular mechanisms relevant to this disease have largely relied on the use of its in vivo model, EAE.
Resumo:
Diagnosis of udder infections with Staphylococcus aureus by bacteriological milk testing of quarter milk samples is often not satisfactory. To get reliable results, repeated sampling is necessary, which is normally too expensive. Therefore, we developed a test that allows the highly specific detection of Staph. aureus in bovine milk samples at very low concentrations. It is based on a fast procedure to prepare bacteria from milk, followed by DNA extraction and quantitative PCR. The whole analysis is done within 5 h. For clinical milk samples, the analytical sensitivity of the assay was 50.7 times and 507 times higher than conventional bacteriology with 100 and 10 microL, respectively. The diagnostic specificity was 100%. The test is further characterized by a low intra- and interassay variability as well as by a good recovery of Staph. aureus from raw milk. Furthermore, a high correlation (R = 0.925) between the agar plate counts and the quantitative PCR methodology over the whole range of measurement was found. In addition, our test revealed considerably more positive results than bacteriology. Due to its favorable properties, the assay might become an important diagnostic tool in the context of bovine mastitis caused by Staph. aureus.
Resumo:
AIMS: We investigated whether myeloid-related protein 8/14 complex (MRP8/14) expressed by infiltrating monocytes and granulocytes may represent a mediator and early biomarker of acute coronary syndromes (ACS). METHODS AND RESULTS: Immunohistochemistry of coronary thrombi was done in 41 ACS patients. Subsequently, levels of MRP8/14 were assessed systemically in 75 patients with ACS and culprit lesions, with stable coronary artery disease (CAD), or with normal coronary arteries. In a subset of patients, MRP8/14 was measured systemically and at the site of coronary occlusion. Macrophages and granulocytes, but not platelets stained positive for MRP8/14 in 76% of 41 thrombi patients. In ACS, local MRP8/14 levels [22.0 (16.2-41.5) mg/L] were increased when compared with systemic levels [13.4 (8.1-14.7) mg/L, P = 0.03]. Systemic levels of MRP8/14 were markedly elevated [15.1 (12.1-21.8) mg/L, P = 0.001] in ACS when compared with stable CAD [4.6 (3.5-7.1) mg/L] or normals [4.8 (4.0-6.3) mg/L]. Using a cut-off level of 8 mg/L, MRP8/14 but not myoglobin or troponin, identified ACS presenting within 3 h from symptom onset. CONCLUSION: In ACS, MRP8/14 is markedly expressed at the site of coronary occlusion by invading phagocytes. The occurrence of elevated MRP8/14 in the systemic circulation prior to markers of myocardial necrosis makes it a prime candidate for the detection of unstable plaques and management of ACS.
Resumo:
BACKGROUND: Pulmonary inflammation after cardiac surgery with cardiopulmonary bypass (CPB) has been linked to respiratory dysfunction and ultrastructural injury. Whether pretreatment with methylprednisolone (MP) can preserve pulmonary surfactant and blood-air barrier, thereby improving pulmonary function, was tested in a porcine CPB-model. MATERIALS AND METHODS: After randomizing pigs to placebo (PLA; n = 5) or MP (30 mg/kg, MP; n = 5), animals were subjected to 3 h of CPB with 1 h of cardioplegic cardiac arrest. Hemodynamic data, plasma tumor necrosis factor-alpha (TNF-alpha, ELISA), and pulmonary function parameters were assessed before, 15 min after CPB, and 8 h after CPB. Lung biopsies were analyzed for TNF-alpha (Western blot) or blood-air barrier and surfactant morphology (electron microscopy, stereology). RESULTS: Systemic TNF-alpha increased and cardiac index decreased at 8 h after CPB in PLA (P < 0.05 versus pre-CPB), but not in MP (P < 0.05 versus PLA). In both groups, at 8 h after CPB, PaO(2) and PaO(2)/FiO(2) were decreased and arterio-alveolar oxygen difference and pulmonary vascular resistance were increased (P < 0.05 versus baseline). Postoperative pulmonary TNF-alpha remained unchanged in both groups, but tended to be higher in PLA (P = 0.06 versus MP). The volume fraction of inactivated intra-alveolar surfactant was increased in PLA (58 +/- 17% versus 83 +/- 6%) and MP (55 +/- 18% versus 80 +/- 17%) after CPB (P < 0.05 versus baseline for both groups). Profound blood-air barrier injury was present in both groups at 8 h as indicated by an increased blood-air barrier integrity score (PLA: 1.28 +/- 0.03 versus 1.70 +/- 0.1; MP: 1.27 +/- 0.08 versus 1.81 +/- 0.1; P < 0.05). CONCLUSION: Despite reduction of the systemic inflammatory response and pulmonary TNF-alpha generation, methylprednisolone fails to decrease pulmonary TNF-alpha and to preserve pulmonary surfactant morphology, blood-air barrier integrity, and pulmonary function after CPB.
Resumo:
A major aim in lung transplantation is to prevent the loss of structural integrity due to ischemia and reperfusion (I/R) injury. Preservation solutions protect the lung against I/R injury to a variable extent. We compared the influence of two extracellular-type preservation solutions (Perfadex, or PX, and Celsior, or CE) on the morphological alterations induced by I/R. Pigs were randomly assigned to sham (n = 4), PX (n = 5), or CE (n = 2) group. After flush perfusion with PX or CE, donor lungs were excised and stored for 27 hr at 4 degrees C. The left donor lung was implanted into the recipient, reperfused for 6 hr, and, afterward, prepared for light and electron microscopy. Intra-alveolar, septal, and peribronchovascular edema as well as the integrity of the blood-air barrier were determined stereologically. Intra-alveolar edema was more pronounced in CE (219.80 +/- 207.55 ml) than in PX (31.46 +/- 15.75 ml). Peribronchovascular (sham: 13.20 +/- 4.99 ml; PX: 15.57 +/- 5.53 ml; CE: 31.56 +/- 5.78 ml) and septal edema (thickness of alveolar septal interstitium, sham: 98 +/- 33 nm; PX: 84 +/- 8 nm; CE: 249 +/- 85 nm) were only found in CE. The blood-air barrier was similarly well preserved in sham and PX but showed larger areas of swollen and fragmented epithelium or endothelium in CE. The present study shows that Perfadex effectively prevents intra-alveolar, septal, and peribronchovascular edema formation as well as injury of the blood-air barrier during I/R. Celsior was not effective in preserving the lung from morphological I/R injury.
Resumo:
The central nervous system (CNS) has long been regarded as an immune privileged organ implying that the immune system avoids the CNS not to disturb its homeostasis, which is critical for proper function of neurons. Meanwhile, it is accepted that immune cells do in fact gain access to the CNS and that immune responses are mounted within this tissue. However, the unique CNS microenvironment strictly controls these immune reactions starting with tightly regulating immune cell entry into the tissue. The endothelial blood-brain barrier (BBB) and the epithelial blood-cerebrospinal fluid (CSF) barrier control immune cell entry into the CNS, which is rare under physiological conditions. During a variety of pathological conditions of the CNS such as viral or bacterial infections, or during inflammatory diseases such as multiple sclerosis (MS), immunocompetent cells readily traverse the BBB and subsequently enter the CNS parenchyma. Most of our current knowledge on the molecular mechanisms involved in immune cell entry into the CNS has been derived from studies performed in experimental autoimmune encephalomyelitis (EAE), an animal model for MS. Thus, a large part of our current knowledge on immune cell entry across the BBBs is based on the results obtained in this animal model. Similarly, knowledge on the benefits and potential risks associated with therapeutic targeting of immune cell recruitment across the BBB in human diseases are mostly derived from such treatment regimen in MS. Other mechanisms of immune cell entry into the CNS might therefore apply under different pathological conditions such as bacterial meningitis or stroke and need to be considered.
Resumo:
Oxygen-sensitive 3He-MRI was studied for the detection of differences in intrapulmonary oxygen partial pressure (pO2) between patients with normal lung transplants and those with bronchiolitis obliterans syndrome (BOS). Using software developed in-house, oxygen-sensitive 3He-MRI datasets from patients with normal lung grafts (n = 8) and with BOS (n = 6) were evaluated quantitatively. Datasets were acqiured on a 1.5-T system using a spoiled gradient echo pulse sequence. Underlying diseases were pulmonary emphysema (n = 10 datasets) and fibrosis (n = 4). BOS status was verified by pulmonary function tests. Additionally, 3He-MRI was assessed blindedly for ventilation defects. Median intrapulmonary pO2 in patients with normal lung grafts was 146 mbar compared with 108 mbar in patients with BOS. Homogeneity of pO2 distribution was greater in normal grafts (standard deviation pO2 34 versus 43 mbar). Median oxygen decrease rate during breath hold was higher in unaffected patients (-1.75 mbar/s versus -0.38 mbar/s). Normal grafts showed fewer ventilation defects (5% versus 28%, medians). Oxygen-sensitive 3He-MRI appears capable of demonstrating differences of intrapulmonary pO2 between normal lung grafts and grafts affected by BOS. Oxygen-sensitive 3He-MRI may add helpful regional information to other diagnostic techniques for the assessment and follow-up of lung transplant recipients.
Resumo:
The penetration of ertapenem, a new carbapenem with a long half-life, reached 7.1 and 2.4% into inflamed and noninflamed meninges, respectively. Ertapenem had excellent antibacterial activity in the treatment of experimental meningitis due to penicillin-sensitive and -resistant pneumococci, leading to a decrease of 0.69 +/- 0.17 and 0.59 +/- 0.22 log(10) CFU/ml x h, respectively, in the viable cell counts in the cerebrospinal fluid. The efficacy of ertapenem was comparable to that of standard regimens (ceftriaxone monotherapy against the penicillin-sensitive strain and ceftriaxone combined with vancomycin against the penicillin-resistant strain). In vitro, ertapenem in concentrations above the MIC was highly bactericidal against both strains. Even against a penicillin- and quinolone-resistant mutant, ertapenem had similar bactericidal activity in vitro.
Resumo:
The goals of the present study were to model the population kinetics of in vivo influx and efflux processes of grepafloxacin at the serum-cerebrospinal fluid (CSF) barrier and to propose a simulation-based approach to optimize the design of dose-finding trials in the meningitis rabbit model. Twenty-nine rabbits with pneumococcal meningitis receiving grepafloxacin at 15 mg/kg of body weight (intravenous administration at 0 h), 30 mg/kg (at 0 h), or 50 mg/kg twice (at 0 and 4 h) were studied. A three-compartment population pharmacokinetic model was fit to the data with the program NONMEM (Nonlinear Mixed Effects Modeling). Passive diffusion clearance (CL(diff)) and active efflux clearance (CL(active)) are transfer kinetic modeling parameters. Influx clearance is assumed to be equal to CL(diff), and efflux clearance is the sum of CL(diff), CL(active), and bulk flow clearance (CL(bulk)). The average influx clearance for the population was 0.0055 ml/min (interindividual variability, 17%). Passive diffusion clearance was greater in rabbits receiving grepafloxacin at 15 mg/kg than in those treated with higher doses (0.0088 versus 0.0034 ml/min). Assuming a CL(bulk) of 0.01 ml/min, CL(active) was estimated to be 0.017 ml/min (11%), and clearance by total efflux was estimated to be 0.032 ml/min. The population kinetic model allows not only to quantify in vivo efflux and influx mechanisms at the serum-CSF barrier but also to analyze the effects of different dose regimens on transfer kinetic parameters in the rabbit meningitis model. The modeling-based approach also provides a tool for the simulation and prediction of various outcomes in which researchers might be interested, which is of great potential in designing dose-finding trials.
Resumo:
BMS 284756 penetrated well into inflamed meninges (44% +/- 11%) and produced good bactericidal activity (-0.82 +/- 0.22 Delta log(10) CFU/ml. h) in the treatment of experimental meningitis in rabbits due to a penicillin-sensitive strain. BMS 284756 monotherapy had a greater potency than the standard regimen of ceftriaxone and vancomycin (-0.49 +/- 0.08 Delta log(10) CFU/ml. h) against a penicillin-resistant strain (MIC, 4 mg/liter). Even against a penicillin- and quinolone-resistant strain, BMS 284756 showed good bactericidal activity (-0.52 +/- 0.12 Delta log(10) CFU/ml. h). The antibacterial activity of BMS 284756 was confirmed by time-killing assays over 8 h in vitro.
Resumo:
Linezolid, a new oxazolidinone antibiotic, showed good penetration (38+/-4%) into the meninges of rabbits with levels in the CSF ranging from 9.5 to 1.8 mg/L after two i.v. injections (20 mg/kg). Linezolid was clearly less effective than ceftriaxone against a penicillin-sensitive pneumococcal strain. Against a penicillin-resistant strain, linezolid had slightly inferior killing rates compared with the standard regimen (ceftriaxone combined with vancomycin). In vitro, linezolid was marginally bactericidal at concentrations above the MIC (5 x and 10 x MIC).
Resumo:
The new fluoroquinolone trovafloxacin was tested against a ciprofloxacin-sensitive, methicillin-resistant Staphylococcus aureus strain in the rabbit model of endocarditis. Trovafloxacin was more effective than vancomycin (CFU/g of vegetation, 2.65 +/- 1.87 versus 4.54 +/- 2.80 [mean +/- standard deviation]; P < 0.05) or ampicillin-sulbactam plus rifampin (4.9 +/- 1.1 CFU/g). The addition of ampicillin-sulbactam to trovafloxacin tended to reduce titers further.