936 resultados para Semantic alignment
Resumo:
Acknowledgements The research described here is supported by the award made by the RCUK Digital Economy programme to the dot.rural Digital Economy Hub; award reference: EP/G066051/1
Resumo:
Other
Resumo:
Peer reviewed
Resumo:
Postprint
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
The semantic model developed in this research was in response to the difficulty a group of mathematics learners had with conventional mathematical language and their interpretation of mathematical constructs. In order to develop the model ideas from linguistics, psycholinguistics, cognitive psychology, formal languages and natural language processing were investigated. This investigation led to the identification of four main processes: the parsing process, syntactic processing, semantic processing and conceptual processing. The model showed the complex interdependency between these four processes and provided a theoretical framework in which the behaviour of the mathematics learner could be analysed. The model was then extended to include the use of technological artefacts into the learning process. To facilitate this aspect of the research, the theory of instrumentation was incorporated into the semantic model. The conclusion of this research was that although the cognitive processes were interdependent, they could develop at different rates until mastery of a topic was achieved. It also found that the introduction of a technological artefact into the learning environment introduced another layer of complexity, both in terms of the learning process and the underlying relationship between the four cognitive processes.
Resumo:
Discussion tools in existing LEs have few or no integrated tools to analyse student learning. This paper proposes tools not only for integrating social network analytics, but also why we need to semantically tag and track key concepts within posts in order to make student learning in discussions visible. This paper will argue for the importance of semantic markup in discussion tools using screenshots of existing LEs and UI mockups of semantically aware discussion tools to argue the case for this element of next generation LEs
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
The article presents a study of a CEFR B2-level reading subtest that is part of the Slovenian national secondary school leaving examination in English as a foreign language, and compares the test-taker actual performance (objective difficulty) with the test-taker and expert perceptions of item difficulty (subjective difficulty). The study also analyses the test-takers’ comments on item difficulty obtained from a while-reading questionnaire. The results are discussed in the framework of the existing research in the fields of (the assessment of) reading comprehension, and are addressed with regard to their implications for item-writing, FL teaching and curriculum development.
Resumo:
Taxonomies have gained a broad usage in a variety of fields due to their extensibility, as well as their use for classification and knowledge organization. Of particular interest is the digital document management domain in which their hierarchical structure can be effectively employed in order to organize documents into content-specific categories. Common or standard taxonomies (e.g., the ACM Computing Classification System) contain concepts that are too general for conceptualizing specific knowledge domains. In this paper we introduce a novel automated approach that combines sub-trees from general taxonomies with specialized seed taxonomies by using specific Natural Language Processing techniques. We provide an extensible and generalizable model for combining taxonomies in the practical context of two very large European research projects. Because the manual combination of taxonomies by domain experts is a highly time consuming task, our model measures the semantic relatedness between concept labels in CBOW or skip-gram Word2vec vector spaces. A preliminary quantitative evaluation of the resulting taxonomies is performed after applying a greedy algorithm with incremental thresholds used for matching and combining topic labels.
Resumo:
The Semantic Annotation component is a software application that provides support for automated text classification, a process grounded in a cohesion-centered representation of discourse that facilitates topic extraction. The component enables the semantic meta-annotation of text resources, including automated classification, thus facilitating information retrieval within the RAGE ecosystem. It is available in the ReaderBench framework (http://readerbench.com/) which integrates advanced Natural Language Processing (NLP) techniques. The component makes use of Cohesion Network Analysis (CNA) in order to ensure an in-depth representation of discourse, useful for mining keywords and performing automated text categorization. Our component automatically classifies documents into the categories provided by the ACM Computing Classification System (http://dl.acm.org/ccs_flat.cfm), but also into the categories from a high level serious games categorization provisionally developed by RAGE. English and French languages are already covered by the provided web service, whereas the entire framework can be extended in order to support additional languages.
Resumo:
Objective
Pedestrian detection under video surveillance systems has always been a hot topic in computer vision research. These systems are widely used in train stations, airports, large commercial plazas, and other public places. However, pedestrian detection remains difficult because of complex backgrounds. Given its development in recent years, the visual attention mechanism has attracted increasing attention in object detection and tracking research, and previous studies have achieved substantial progress and breakthroughs. We propose a novel pedestrian detection method based on the semantic features under the visual attention mechanism.
Method
The proposed semantic feature-based visual attention model is a spatial-temporal model that consists of two parts: the static visual attention model and the motion visual attention model. The static visual attention model in the spatial domain is constructed by combining bottom-up with top-down attention guidance. Based on the characteristics of pedestrians, the bottom-up visual attention model of Itti is improved by intensifying the orientation vectors of elementary visual features to make the visual saliency map suitable for pedestrian detection. In terms of pedestrian attributes, skin color is selected as a semantic feature for pedestrian detection. The regional and Gaussian models are adopted to construct the skin color model. Skin feature-based visual attention guidance is then proposed to complete the top-down process. The bottom-up and top-down visual attentions are linearly combined using the proper weights obtained from experiments to construct the static visual attention model in the spatial domain. The spatial-temporal visual attention model is then constructed via the motion features in the temporal domain. Based on the static visual attention model in the spatial domain, the frame difference method is combined with optical flowing to detect motion vectors. Filtering is applied to process the field of motion vectors. The saliency of motion vectors can be evaluated via motion entropy to make the selected motion feature more suitable for the spatial-temporal visual attention model.
Result
Standard datasets and practical videos are selected for the experiments. The experiments are performed on a MATLAB R2012a platform. The experimental results show that our spatial-temporal visual attention model demonstrates favorable robustness under various scenes, including indoor train station surveillance videos and outdoor scenes with swaying leaves. Our proposed model outperforms the visual attention model of Itti, the graph-based visual saliency model, the phase spectrum of quaternion Fourier transform model, and the motion channel model of Liu in terms of pedestrian detection. The proposed model achieves a 93% accuracy rate on the test video.
Conclusion
This paper proposes a novel pedestrian method based on the visual attention mechanism. A spatial-temporal visual attention model that uses low-level and semantic features is proposed to calculate the saliency map. Based on this model, the pedestrian targets can be detected through focus of attention shifts. The experimental results verify the effectiveness of the proposed attention model for detecting pedestrians.
Resumo:
The aim of this paper is to explore the role of Quality Management (QM) theory and practice using a contingency theory perspective. The study is grounded in the role of QM in improving strategic alignment within Small and Medium Sized Enterprises (SMEs) using Contingency Theory rather than adopting best practice approaches. An inductive theory building research methodology was used involving multiple case analyses of five SMEs, involving repeat interviews (n=45), focus groups (n=5) and document analysis. From the findings, it was found that Contingency Variables (strategy, culture, lifecycle and customer focus) and their respective typologies were found to interact with QM practices in helping to shape strategic alignment between the SMEs and their environments. This shaping process based on contingency approaches occurred in a manner unique to each SME and their respective environments rather than in an overarching best practice manner.