961 resultados para Scientific Community
Resumo:
The use of atmospheric pressure plasmas for thin film deposition on thermo-sensitive materials is currently one of the main challenges of the plasma scientific community. Despite the growing interest in this field, the existing knowledge gap between gas-phase reaction mechanisms and thin film properties is still one of the most important barriers to overcome for a complete understanding of the process. In this work, thin films surface characterization techniques, combined with passive and active gas-phase diagnostic methods, were used to provide a comprehensive study of the Ar/TEOS deposition process assisted by an atmospheric pressure plasma jet. SiO2-based thin films exhibiting a well-defined chemistry, a good morphological structure and high uniformity were studied in detail by FTIR, XPS, AFM and SEM analysis. Furthermore, non-intrusive spectroscopy techniques (OES, filter imaging) and laser spectroscopic methods (Rayleigh scattering, LIF and TALIF) were employed to shed light on the complexity of gas-phase mechanisms involved in the deposition process and discuss the influence of TEOS admixture on gas temperature, electron density and spatial-temporal behaviours of active species. The poly-diagnostic approach proposed in this work opens interesting perspectives both in terms of process control and optimization of thin film performances.
Resumo:
Early definitions of Smart Building focused almost entirely on the technology aspect and did not suggest user interaction at all. Indeed, today we would attribute it more to the concept of the automated building. In this sense, control of comfort conditions inside buildings is a problem that is being well investigated, since it has a direct effect on users’ productivity and an indirect effect on energy saving. Therefore, from the users’ perspective, a typical environment can be considered comfortable, if it’s capable of providing adequate thermal comfort, visual comfort and indoor air quality conditions and acoustic comfort. In the last years, the scientific community has dealt with many challenges, especially from a technological point of view. For instance, smart sensing devices, the internet, and communication technologies have enabled a new paradigm called Edge computing that brings computation and data storage closer to the location where it is needed, to improve response times and save bandwidth. This has allowed us to improve services, sustainability and decision making. Many solutions have been implemented such as smart classrooms, controlling the thermal condition of the building, monitoring HVAC data for energy-efficient of the campus and so forth. Though these projects provide to the realization of smart campus, a framework for smart campus is yet to be determined. These new technologies have also introduced new research challenges: within this thesis work, some of the principal open challenges will be faced, proposing a new conceptual framework, technologies and tools to move forward the actual implementation of smart campuses. Keeping in mind, several problems known in the literature have been investigated: the occupancy detection, noise monitoring for acoustic comfort, context awareness inside the building, wayfinding indoor, strategic deployment for air quality and books preserving.
Resumo:
In 2017, Chronic Respiratory Diseases accounted for almost four million deaths worldwide. Unfortunately, current treatments are not definitive for such diseases. This unmet medical need forces the scientific community to increase efforts in the identification of new therapeutic solutions. PI3K delta plays a key role in mechanisms that promote airway chronic inflammation underlying Asthma and COPD. The first part of this project was dedicated to the identification of novel PI3K delta inhibitors. A first SAR expansion of a Hit, previously identified by a HTS campaign, was carried out. A library of 43 analogues was synthesised taking advantage of an efficient synthetic approach. This allowed the identification of an improved Hit of nanomolar enzymatic potency and moderate selectivity for PI3K delta over other PI3K isoforms. However, this compound exhibited low potency in cell-based assays. Low cellular potency was related to sub optimal phys-chem and ADME properties. The analysis of the X-ray crystal structure of this compound in human PI3K delta guided a second tailored SAR expansion that led to improved cellular potency and solubility. The second part of the thesis was focused on the rational design and synthesis of new macrocyclic Rho-associated protein kinases (ROCKs) inhibitors. Inhibition of these kinases has been associated with vasodilating effects. Therefore, ROCKs could represent attractive targets for the treatment of pulmonary arterial hypertension (PAH). Known ROCK inhibitors suffer from low selectivity across the kinome. The design of macrocyclic inhibitors was considered a promising strategy to obtain improved selectivity. Known inhibitors from literature were evaluated for opportunities of macrocyclization using a knowledge-based approach supported by Computer Aided Drug Design (CADD). The identification of a macrocyclic ROCK inhibitor with enzymatic activity in the low micro molar range against ROCK II represented a promising result that validated this innovative approach in the design of new ROCKs inhibitors.
Resumo:
At the beginning, this Ph.D. project led to an overview of the most common and emerging types of fraud and possible countermeasures in the olive oil sector. Furthermore, possible weaknesses in the current conformity check system for olive oil were highlighted. Among those, despite the organoleptic assessment is a fundamental tool for establishing the virgin olive oils (VOOs) quality grade, the scientific community has evidenced some drawbacks in it. In particular, the application of instrumental screening methods to support the panel test could reduce the work of sensory panels and the cost of this analysis (e.g. for industries, distributors, public and private control laboratories), permitting the increase in the number and the efficiency of the controls. On this basis, a research line called “Quantitative Panel Test” is one of the main expected outcomes of the OLEUM project that is also partially discussed in this doctoral dissertation. In this framework, analytical activities were carried out, within this PhD project, aimed to develop and validate analytical protocols for the study of the profiles in volatile compounds (VOCs) of the VOOs headspace. Specifically, two chromatographic approaches, one targeted and one semi-targeted, to determine VOCs were investigated in this doctoral thesis. The obtained results, will allow the possible establishment of concentration limits and ranges of selected volatile markers, as related to fruitiness and defects, with the aim to support the panel test in the commercial categorization of VOOs. In parallel, a rapid instrumental screening method based on the analysis of VOCs has been investigated to assist the panel test through a fast pre-classification of VOOs samples based on a known level of probability, thus increasing the efficiency of quality control.
Resumo:
In the last decades significant improvements has been reached in short term graft survival, conversely long-term graft survival in still an open challenge for the scientific community. One of the major causes of long term graft loss is represented by chronic- active antibody mediated rejection (cAMR), a recently identified entity whose diagnosis is based on laboratoristic and histologic elements: the presence of DSA associated to specific morphological lesions as inflammation and microvascular damage associated or not to C4d deposition. Treatment of cAMR is an open field of debate. Tocilizumab, an anti-IL6 monoclonal antibody has been recently proposed as a first line treatment for cAMR, showing encouranging results. We describe our monocentric experience using Tocilizumab as first-line therapy for cAMR. Graft function (eGFR), proteinuria and DSA have been evaluated every 6 month for 24 months; histology have been performed after 12 months of treatment. No adverse events have been observed during study period. 12 patients completed the study with a follow-up of 24 months. Kidney function showed a worsening during follow-up that reaches statistical significance at 12 and 24 months (eGFR from 32.2±13.9 ml/min to 26.9±13 ml/min), but far less than expected for these kind of patients. 4 patients (30%) reached ESRD during follow-up, 3 requiring renal replacement therapy. We did not observed any statically significant variation in proteinuria and in DSA MFI levels. From a histological point of view, we observed a significant improvement in active cAMR lesions (C4d deposition and Acute tissue injury (MTA, g>0/ptc>0, v>0) and no progression among chronic lesions (Transplant glomerulopathy, PTC multilayering and aterial intimal fibrosis) Tocilizumab shown good results, with a stabilization of graft function, a reduction in kidney inflammation and active lesions in kidney biopsy and not allowing progression of chronic lesions.
Resumo:
A partire dal dibattito teorico proposto dalla comunità scientifica, che afferma che negli iconotesti le immagini non illustrano il testo e i testi non descrivono le immagini, e che tra i due linguaggi esiste un rapporto di insubordinazione e conflitto, l’obiettivo principale della mia tesi è quello di individuare come tale rapporto prenda forma in un corpus composto da autori italiani (Daniele Del Giudice, Umberto Eco, Michele Mari, Giorgio Agamben, Tommaso Pincio, Filippo Tuena, Emanuele Trevi, Antonella Anedda) e stranieri (John Berger, Sophie Calle, W. G. Sebald, Julio Cortázar, Orhan Pamuk, Jorge Luis Borges). Dopo aver tracciato la storia dell'iconotesto, la tesi si propone di definire una nuova categoria di iconotesto, in cui immagini e testi sono esposti all'interno di altre immagini. Può trattarsi di fotografie scattate dagli autori o da altri fotografi, oppure di immagini d'archivio. L’obiettivo è quello di mostrare le influenze formali del "Bilderatlas Mnemosyne" di Aby Warburg nel corpus selezionato e di verificare come questa tipologia sia sempre più diffusa nella letteratura contemporanea, come proiezione di una tendenza all'ipertestualità: ricorrono alcuni elementi come il montaggio, la mise en abyme, la ripetizione e il dettaglio, e una particolare forma di ekphrasis-didascalia, secondo cui la presenza dell'immagine implica una metamorfosi della concezione tradizionale del testo che descrive un'immagine, attraverso il passaggio dalla descrizione alla mostrazione.
Resumo:
The growing concentration of CO2 in the atmosphere and its harmful consequences has led the scientific community to direct its efforts towards sustainable processes. Among the possible approaches, the use of CO2 and alternative solvents are two strategies that are having widespread diffusion. In this work the reuse of CO2 is expressed by using it as a reaction reagent and as trigger to change the physical properties of a catalyst thus facilitating its recovery. As regards the CO2 use as reagent, two catalytic systems have been developed for the conversion of CO2 and epoxides into cyclic carbonates, used in the synthesis of polymers and as aprotic solvents. Homogeneous catalysts made by choline-based eutectic mixtures and heterogeneous catalysts made from biopolymers and waste pyrolysis have been synthesized and tested on this reaction. The carbonate interchange reaction (CIR) of a diol with a linear carbonate (as dimethyl carbonate) is an interesting alternative, for the synthesis of cyclic carbonates; as the second application of CO2 as polarity trigger, it was used for catalyst recovery. In fact DBU, here used as catalyst, is part of the so called “switchable solvents”: they can pass from a less-polar to a more-polar form (and from being soluble to non-soluble in the reaction mixture) when reacting with CO2 in presence of water or alcohols. Also in this case, heterogeneous catalysts made from biopolymers and waste pyrolysis have been synthesized and tested on CIR. As for the use of alternative solvents, this work focuses on the use of Deep Eutectic Solvents (DESs). They are a new generation of solvents composed by a mixture of two or more substances, liquid at room temperature, and non-volatile. New and biobased DESs were here used: i) as reaction media to carry out chemoenzymatic epoxidation; ii) in the extraction of astaxanthin from microalgae culture.
Resumo:
Nowadays, the scientific community has devoted a consistent effort to the sustainable development of the waste management sector and resource efficiency in building infrastructures. Waste is the fourth largest source sector of emissions and the municipal solid waste management system is considered as the most complex system to manage, due to its diverse composition and fragmentation of producers and responsibilities. Nevertheless, given the deep complexity that characterize the waste management sector, sustainability is still a challenging task. Interestingly, open issues arise when dealing with the sustainability of the waste sector. In this thesis, some recent advances in the waste management sector have been presented. Specifically, through the analysis of four author publications this thesis attempted to fill the gap in the following open issues: (i) the waste collection and generation of waste considering the pillars of sustainability; (ii) the environmental and social analysis in designing building infrastructures; (iv) the role of the waste collection in boosting sustainable systems of waste management; (v) the ergonomics impacts of waste collection. For this purpose, four author publications in international peer – reviewed journals were selected among the wholly author's contributions (i.e., final publication stage).
Resumo:
Astrocytes are the most numerous glial cell type in the mammalian brain and permeate the entire CNS interacting with neurons, vasculature, and other glial cells. Astrocytes display intracellular calcium signals that encode information about local synaptic function, distributed network activity, and high-level cognitive functions. Several studies have investigated the calcium dynamics of astrocytes in sensory areas and have shown that these cells can encode sensory stimuli. Nevertheless, only recently the neuro-scientific community has focused its attention on the role and functions of astrocytes in associative areas such as the hippocampus. In our first study, we used the information theory formalism to show that astrocytes in the CA1 area of the hippocampus recorded with 2-photon fluorescence microscopy during spatial navigation encode spatial information that is complementary and synergistic to information encoded by nearby "place cell" neurons. In our second study, we investigated various computational aspects of applying the information theory formalism to astrocytic calcium data. For this reason, we generated realistic simulations of calcium signals in astrocytes to determine optimal hyperparameters and procedures of information measures and applied them to real astrocytic calcium imaging data. Calcium signals of astrocytes are characterized by complex spatiotemporal dynamics occurring in subcellular parcels of the astrocytic domain which makes studying these cells in 2-photon calcium imaging recordings difficult. However, current analytical tools which identify the astrocytic subcellular regions are time consuming and extensively rely on user-defined parameters. Here, we present Rapid Astrocytic calcium Spatio-Temporal Analysis (RASTA), a novel machine learning algorithm for spatiotemporal semantic segmentation of 2-photon calcium imaging recordings of astrocytes which operates without human intervention. We found that RASTA provided fast and accurate identification of astrocytic cell somata, processes, and cellular domains, extracting calcium signals from identified regions of interest across individual cells and populations of hundreds of astrocytes recorded in awake mice.
Resumo:
This Doctoral Thesis aims at studying, developing, and characterizing cutting edge equipment for EMC measurements and proposing innovative and advanced power line filter design techniques. This document summarizes a three-year work, is strictly industry oriented and relies on EMC standards and regulations. It contains the main results, findings, and effort with the purpose of bringing innovative contributions at the scientific community. Conducted emissions interferences are usually suppressed with power line filters. These filters are composed by common mode chokes, X capacitors and Y capacitors in order to mitigate both the differential mode and common mode noise, which compose the overall conducted emissions. However, even at present days, available power line filter design techniques show several disadvantages. First of all, filters are designed to be implemented in ideal 50 Ω systems, condition which is far away from reality. Then, the attenuation introduced by the filter for common or differential mode noise is analyzed independently, without considering the possible mode conversion that can be produced by impedance mismatches, or asymmetries in either the power line filter itself or the equipment under test. Ultimately, the instrumentation used to perform conducted emissions measurement is, in most cases, not adequate. All these factors lead to an inaccurate design, contributing at increasing the size of the filter, making it more expensive and less performant than it should be.
Resumo:
One of the main practical implications of quantum mechanical theory is quantum computing, and therefore the quantum computer. Quantum computing (for example, with Shor’s algorithm) challenges the computational hardness assumptions, such as the factoring problem and the discrete logarithm problem, that anchor the safety of cryptosystems. So the scientific community is studying how to defend cryptography; there are two defense strategies: the quantum cryptography (which involves the use of quantum cryptographic algorithms on quantum computers) and the post-quantum cryptography (based on classical cryptographic algorithms, but resistant to quantum computers). For example, National Institute of Standards and Technology (NIST) is collecting and standardizing the post-quantum ciphers, as it established DES and AES as symmetric cipher standards, in the past. In this thesis an introduction on quantum mechanics was given, in order to be able to talk about quantum computing and to analyze Shor’s algorithm. The differences between quantum and post-quantum cryptography were then analyzed. Subsequently the focus was given to the mathematical problems assumed to be resistant to quantum computers. To conclude, post-quantum digital signature cryptographic algorithms selected by NIST were studied and compared in order to apply them in today’s life.
Resumo:
The aim of this dissertation is to present the sequence of events which brought the scientific community of the early 20th century to conceive an expanding Universe born from a single origin. Among the facts here reported, some are well-known, some others instead are little-known backstories, not so easy neither to obtain nor to trust. Indeed, several matters shown in this thesis, now as then, create a battleground among scientists. Amid the numerous personalities whose contributions are discussed in this work, the main protagonist is surely Georges Lemaître, who managed to combine – without overlapping – his being both a priest and a scientist. The first chapter is dedicated to his biography, from his childhood in Belgium, to his early adulthood between England and the USA, to his success in the scientific community. The second and the third chapter explain how the race to the understanding of a Universe which not only expands, but also originated from a singularity, developed. The Belgian priest’s discoveries, as shown, were challenged by other important scientists, who, in several cases, Lemaître had a friendly relationship with. As a consequence, the fourth and final chapter deals with the multiple relations that the priest managed to build, thanks to his politeness and kindness. Moreover, it is also covered Lemaître’s personal connection with the Church and religion, without forgetting the personalities that influenced him – above all, Saint Thomas Aquinas. As a conclusion to this thesis, two appendices gather not only a summary of Lemaître’s works which are not already described in the chapters, but also the biographies of all the characters presented in this dissertation.
Resumo:
Microbial Fuel Cells (MFC) technology finds space as a promising technology as a green alternative power-generating device, by the possibility to convert organic matter directly into electricity by microbially catalysed reactions, especially for the potential of the simultaneous treatment of wastewaters. Despite the studies that were carried out over the decades, MFCs still provide insufficient power and current densities in order to be commercially attractive in the energy market. Scientific community today pursues two main strategies in order to increase the overall performance output of the MFC. The first is to support the cells with an external supercapacitor (SC), which is able to accept and deliver charge much faster than normal capacitors, thanks to the use of an electrostatic double-layer capacitance, in combination with pseudocapacitance. The second is to implement directly the SC into the MFC, by using carbon electrodes with high surface area, similar to the SC. Both strategies are eventually supported by the use of charge boosters, respect to the application of the MFC. Galvanostatic measures for the MFC and SCs are performed at different currents, alone and by integration of both devices. The SCs used have a capacitance respectively of 1F, 3F and 6F. Subsequently, a stack of MFCs is assembled and paired to a 3F SC, in order to power an ambient diffuser, able to spray at intervals with a can and a controller. In conclusion, the use of a SC in parallel to the MFCs increases the overall performance of the system. The SC remove the discharge current limit of the MFC and increases the energy and power delivered by the system, allowing it to power for a certain time the ambient diffuser successfully. The key factor highlighted by the final experiment was the insufficient charging time of the SC, resulting finally in a voltage that is inadequate to power the device. Further studies are therefore necessary to improve the performance of the MFCs.
Resumo:
Ericaria amentacea is an endemic alga of the Mediterranean Sea that lives in the littoral rocky fringe. The species is sensitive to environmental changes, so it’s used to assess the water ecological quality. Nevertheless, E. amentacea is deeply impacted by coastal development which cause rapid regression despite data on its distribution and healthy status are still limited. Moreover, it’s little known by people outside the scientific community. In this context, Portofino Seaweed Garden was born, a conservation and citizen science project aim to involve marine outdoor enthusiasts in protecting and restoring E. amentacea, creating a submerged garden. Restoration measures have been encouraged by EU regulations. Here, using citizen science, 1) I evaluated the spatial variability of E. amentacea abundance along the central-eastern Ligurian coast, to evaluate its status and choose donor and restoration sites. 2) I carried out an E. amentacea restoration (with outplanting lab-cultured embryos on 50 clay tiles). 3) I assessed the community involvement and education of volunteers. Simple protocol was created to train them on the monitoring. Unprecedented E. amentacea reproductive mismatch affected the restoration performance, probably caused by marine heat wave that hit the Mediterranean in summer 2022. After fertile apices collection in Pontetto (GE) and during laboratory phase, gametes spawned on the discs didn’t settle as expected. Only 16 tiles showed juveniles and they were outplanted at Punta Castello (C zone of Portofino MPA). Unfortunately, they didn’t survive in the field due to an interplay of physical and biological factors. From citizen science point of view, the project demonstrated positive outcomes of collaborations between people and scientists by involving more than 100 participants. Citizen scientists became specialize in the protocol providing quality data for E. amentacea conservation. Current results suggest that outplanting should be further tested.