918 resultados para Sarah network of hospitals
Resumo:
The presynaptic terminal contains a complex network of filaments whose precise organization and functions are not yet understood. The cryoelectron tomography experiments reported in this study indicate that these structures play a prominent role in synaptic vesicle release. Docked synaptic vesicles did not make membrane to membrane contact with the active zone but were instead linked to it by tethers of different length. Our observations are consistent with an exocytosis model in which vesicles are first anchored by long (>5 nm) tethers that give way to multiple short tethers once vesicles enter the readily releasable pool. The formation of short tethers was inhibited by tetanus toxin, indicating that it depends on soluble N-ethyl-maleimide sensitive fusion protein attachment protein receptor complex assembly. Vesicles were extensively interlinked via a set of connectors that underwent profound rearrangements upon synaptic stimulation and okadaic acid treatment, suggesting a role of these connectors in synaptic vesicle mobilization and neurotransmitter release.
Resumo:
There is a growing demand for better understanding of the link between research, policy and practice in development. This article provides findings from a study that aimed to gain insights into how researchers engage with their non-academic partners. It draws on experiences from the National Centre of Competence in Research North-South programme, a development research network of Swiss, African, Asian and Latin American institutions. Conceptually, this study is concerned with research effectiveness as a means to identify knowledge useful for society. Research can be improved and adapted when monitoring the effects of interactions between researchers and non-academic partners. Therefore, a monitoring and learning approach was chosen. This study reveals researchers' strategies in engaging with non-academic partners and points to framing conditions considered decisive for soccessful interactions. It concludes that reserachrs need to systematically analyse the socio-political context in which they intervene. By providing insights from the ground and reflecting on them in the light of the latest theoretical concepts, this article contributes to the emerging literature founded on practice-based experience.
Resumo:
Neuropsychological studies have suggested that imagery processes may be mediated by neuronal mechanisms similar to those used in perception. To test this hypothesis, and to explore the neural basis for song imagery, 12 normal subjects were scanned using the water bolus method to measure cerebral blood flow (CBF) during the performance of three tasks. In the control condition subjects saw pairs of words on each trial and judged which word was longer. In the perceptual condition subjects also viewed pairs of words, this time drawn from a familiar song; simultaneously they heard the corresponding song, and their task was to judge the change in pitch of the two cued words within the song. In the imagery condition, subjects performed precisely the same judgment as in the perceptual condition, but with no auditory input. Thus, to perform the imagery task correctly an internal auditory representation must be accessed. Paired-image subtraction of the resulting pattern of CBF, together with matched MRI for anatomical localization, revealed that both perceptual and imagery. tasks produced similar patterns of CBF changes, as compared to the control condition, in keeping with the hypothesis. More specifically, both perceiving and imagining songs are associated with bilateral neuronal activity in the secondary auditory cortices, suggesting that processes within these regions underlie the phenomenological impression of imagined sounds. Other CBF foci elicited in both tasks include areas in the left and right frontal lobes and in the left parietal lobe, as well as the supplementary motor area. This latter region implicates covert vocalization as one component of musical imagery. Direct comparison of imagery and perceptual tasks revealed CBF increases in the inferior frontal polar cortex and right thalamus. We speculate that this network of regions may be specifically associated with retrieval and/or generation of auditory information from memory.
Resumo:
Primate multisensory object perception involves distributed brain regions. To investigate the network character of these regions of the human brain, we applied data-driven group spatial independent component analysis (ICA) to a functional magnetic resonance imaging (fMRI) data set acquired during a passive audio-visual (AV) experiment with common object stimuli. We labeled three group-level independent component (IC) maps as auditory (A), visual (V), and AV, based on their spatial layouts and activation time courses. The overlap between these IC maps served as definition of a distributed network of multisensory candidate regions including superior temporal, ventral occipito-temporal, posterior parietal and prefrontal regions. During an independent second fMRI experiment, we explicitly tested their involvement in AV integration. Activations in nine out of these twelve regions met the max-criterion (A < AV > V) for multisensory integration. Comparison of this approach with a general linear model-based region-of-interest definition revealed its complementary value for multisensory neuroimaging. In conclusion, we estimated functional networks of uni- and multisensory functional connectivity from one dataset and validated their functional roles in an independent dataset. These findings demonstrate the particular value of ICA for multisensory neuroimaging research and using independent datasets to test hypotheses generated from a data-driven analysis.
Resumo:
Mortality among HIV-infected persons is decreasing, and causes of death are changing. Classification of deaths is hampered because of low autopsy rates, frequent deaths outside of hospitals, and shortcomings of International Statistical Classification of Diseases and Related Health Problems (ICD-10) coding.
Resumo:
This project is the third stage of a comparative research project, The New Baltic Barometer, which was carried out simultaneously with the "New Democracies Barometer" of the Paul Lazerfeld Society (Vienna) and The Russian Barometer. It studied the opinion and behaviour of the largest Baltic ethnic groups (Estonians, Latvians, Lithuanians). The main focus was on the attitudes of Baltic residents towards the changes in the economic and political system, attitudes towards political values, political trust, and attitudes to the Baltic countries joining the European Union. An analysis of macroeconomic indicators of the Baltic states made it possible to deduce the link between the country's economic development, and satisfaction with the political regime and attitudes towards democratic values. The study analysed the conditions for the democratisation of society, i.e. the development of culture and public opinion in the Baltic states. Attention was also paid to the development of a social network of individuals, showing the transition from informal networks to impersonal institutions. The group concluded that the participation of residents in formal organisations, NGOs in particular, considerably fosters political trust and also increases political efficacy. Participation in formal organisations also reduces the importance of esteem for an authoritarian leader.
Resumo:
This article provides a selective overview of the functional neuroimaging literature with an emphasis on emotional activation processes. Emotions are fast and flexible response systems that provide basic tendencies for adaptive action. From the range of involved component functions, we first discuss selected automatic mechanisms that control basic adaptational changes. Second, we illustrate how neuroimaging work has contributed to the mapping of the network components associated with basic emotion families (fear, anger, disgust, happiness), and secondary dimensional concepts that organise the meaning space for subjective experience and verbal labels (emotional valence, activity/intensity, approach/withdrawal, etc.). Third, results and methodological difficulties are discussed in view of own neuroimaging experiments that investigated the component functions involved in emotional learning. The amygdala, prefrontal cortex, and striatum form a network of reciprocal connections that show topographically distinct patterns of activity as a correlate of up and down regulation processes during an emotional episode. Emotional modulations of other brain systems have attracted recent research interests. Emotional neuroimaging calls for more representative designs that highlight the modulatory influences of regulation strategies and socio-cultural factors responsible for inhibitory control and extinction. We conclude by emphasising the relevance of the temporal process dynamics of emotional activations that may provide improved prediction of individual differences in emotionality.
Resumo:
Situationally adaptive behavior relies on the identification of relevant target stimuli, the evaluation of these with respect to the current context and the selection of an appropriate action. We used functional magnetic resonance imaging (fMRI) to disentangle the neural networks underlying these processes within a single task. Our results show that activation of mid-ventrolateral prefrontal cortex (PFC) reflects the perceived presence of a target stimulus regardless of context, whereas context-appropriate evaluation is subserved by mid-dorsolateral PFC. Enhancing demands on response selection by means of response conflict activated a network of regions, all of which are directly connected to motor areas. On the midline, rostral anterior paracingulate cortex was found to link target detection and response selection by monitoring for the presence of behaviorally significant conditions. In summary, we provide new evidence for process-specific functional dissociations in the frontal lobes. In target-centered processing, target detection in the VLPFC is separable from contextual evaluation in the DLPFC. Response-centered processing in motor-associated regions occurs partly in parallel to these processes, which may enhance behavioral efficiency, but it may also lead to reaction time increases when an irrelevant response tendency is elicited.
Resumo:
We present a model of spike-driven synaptic plasticity inspired by experimental observations and motivated by the desire to build an electronic hardware device that can learn to classify complex stimuli in a semisupervised fashion. During training, patterns of activity are sequentially imposed on the input neurons, and an additional instructor signal drives the output neurons toward the desired activity. The network is made of integrate-and-fire neurons with constant leak and a floor. The synapses are bistable, and they are modified by the arrival of presynaptic spikes. The sign of the change is determined by both the depolarization and the state of a variable that integrates the postsynaptic action potentials. Following the training phase, the instructor signal is removed, and the output neurons are driven purely by the activity of the input neurons weighted by the plastic synapses. In the absence of stimulation, the synapses preserve their internal state indefinitely. Memories are also very robust to the disruptive action of spontaneous activity. A network of 2000 input neurons is shown to be able to classify correctly a large number (thousands) of highly overlapping patterns (300 classes of preprocessed Latex characters, 30 patterns per class, and a subset of the NIST characters data set) and to generalize with performances that are better than or comparable to those of artificial neural networks. Finally we show that the synaptic dynamics is compatible with many of the experimental observations on the induction of long-term modifications (spike-timing-dependent plasticity and its dependence on both the postsynaptic depolarization and the frequency of pre- and postsynaptic neurons).
Resumo:
BACKGROUND: Oxidized low density lipoprotein (oxLDL) has been shown to induce apoptosis and senescence of endothelial progenitor cells (EPC). In the present study, we hypothesized that even sub-apoptotic concentrations of oxLDL impair the angiogenic potential of EPC and investigated if this effect is mediated by affecting adhesion and incorporation. METHODS: A co-culture system of human microvascular endothelial cells and EPC was used to study the effect of sub-apoptotic concentrations of native (nLDL) and oxLDL on cell-cell interaction. The expression and the functional role of angiogenic adhesion molecules and integrins was monitored by FACS and neutralizing assay, respectively. RESULTS: We observed an inhibition of tube formation and impairment of EPC integration into the vascular network of mature endothelial cells by oxLDL. In contrast, nLDL did not affect angiogenic properties of EPC. Incubation of EPC with sub-apoptotic oxLDL concentrations significantly decreased E-selectin and integrin alpha(v)beta(5) expression (37.6% positive events vs. 71.5% and 24.3% vs. 49.9% compared to control culture media without oxLDL). Interestingly, expression of alpha(v)beta(3), VE-cadherin and CD31 remained unchanged. Blocking of E-selectin and integrin alpha(v)beta(5) by neutralizing antibody effectively inhibited adhesion of EPC to differentiated endothelial cells (56.5% and 41.9% of control; p<0.001). CONCLUSION: In conclusion, oxidative alteration of LDL impairs angiogenic properties of EPC at sub-apoptotic levels by downregulation of E-selectin and integrin alpha(v)beta(5), both substantial mediators of EPC-endothelial cell interaction.
Resumo:
In 2005, Wetland Studies and Solutions, Inc. (WSSI) installed an extensive Low Impact Development (LID) stormwater management system on their new office site in Gainesville, Virginia. The 4-acre site is serviced by a network of LID components: permeable pavements (two proprietary and one gravel type), bioretention cell / rain garden, green roof, vegetated swale, rainwater harvesting and drip irrigation, and slow-release underground detention. The site consists of heavy clay soils, and the LID components are mostly integrated by a series of underdrain pipes. A comprehensive monitoring system has been designed and installed to measure hydrologic performance throughout the LID, underdrained network. The monitoring system measures flows into and out of each LID component independently while concurrently monitoring rainfall events. A sensitivity analysis and laboratory calibration has been performed on the flow measurement system. Field data has been evaluated to determine the hydrologic performance of the LID features. Finally, hydrologic models amenable to compact, underdrained LID sites have been reviewed and recommended for future modeling and design.
Resumo:
BACKGROUND: In some Western countries, more and more patients seek initial treatment even for minor injuries at emergency units of hospitals. The initial evaluation and treatment as well as aftercare of these patients require large amounts of personnel and logistical resources, which are limited and costly, especially if compared to treatment by a general practitioner. In this study, we investigated whether outsourcing from our level 1 trauma center to a general practitioner has an influence on patient satisfaction and compliance. METHODS: This prospective, randomized study, included n = 100 patients who suffered from a lateral ankle ligament injury grade I-II (16, 17). After radiological exclusion of osseous lesions, the patients received early functional treatment and were shown physical therapy exercises to be done at home, without immobilization or the use of stabilizing ortheses. The patients were randomly assigned into two groups of 50 patients each: Group A (ER): Follow-up and final examination in the hospital's emergency unit. Group B (GP): Follow-up by general practitioner, final examination at hospital's emergency unit. The patients were surveyed regarding their satisfaction with the treatment and outcome of the treatment. RESULTS: Female and male patients were equally represented in both groups. The age of the patients ranged from 16 - 64 years, with a mean age of 34 years (ER) and 35 years (GP). 98% (n = 98) of all patients were satisfied with their treatment, and 93% (n = 93) were satisfied with the outcome. For these parameters no significant difference between the two groups could be noted (p = 0.7406 and 0.7631 respectively). 39% of all patients acquired stabilizing ortheses like ankle braces (Aircast, Malleoloc etc.) on their own initiative. There was a not significant tendency for more self-acquired ortheses in the group treated by general practicioners (p = 0,2669). CONCLUSION: Patients who first present at the ER with a lateral ankle ligament injury grade I-II can be referred to a general practitioner for follow-up treatment without affecting patient satisfaction regarding treatment and treatment outcome.
Resumo:
AIMS: To compare the gender distribution of HIV-infected adults receiving highly active antiretroviral treatment (HAART) in resource-constrained settings with estimates of the gender distribution of HIV infection; to describe the clinical characteristics of women and men receiving HAART. METHODS: The Antiretroviral Therapy in Lower-Income Countries, ART-LINC Collaboration is a network of clinics providing HAART in Africa, Latin America, and Asia. We compared UNAIDS data on the gender distribution of HIV infection with the proportions of women and men receiving HAART in the ART-LINC Collaboration. RESULTS: Twenty-nine centers in 13 countries participated. Among 33,164 individuals, 19,989 (60.3%) were women. Proportions of women receiving HAART in ART-LINC centers were similar to, or higher than, UNAIDS estimates of the proportions of HIV-infected women in all but two centers. There were fewer women receiving HAART than expected from UNAIDS data in one center in Uganda and one center in India. Taking into account heterogeneity across cohorts, women were younger than men, less likely to have advanced HIV infection, and more likely to be anemic at HAART initiation. CONCLUSIONS: Women in resource-constrained settings are not necessarily disadvantaged in their access to HAART. More attention needs to be paid to ensuring that HIV-infected men are seeking care and starting HAART.
Resumo:
BACKGROUND: Few data are available on the long-term immunologic response to antiretroviral therapy (ART) in resource-limited settings, where ART is being rapidly scaled up using a public health approach, with a limited repertoire of drugs. OBJECTIVES: To describe immunologic response to ART among ART patients in a network of cohorts from sub-Saharan Africa, Latin America, and Asia. STUDY POPULATION/METHODS: Treatment-naive patients aged 15 and older from 27 treatment programs were eligible. Multilevel, linear mixed models were used to assess associations between predictor variables and CD4 cell count trajectories following ART initiation. RESULTS: Of 29 175 patients initiating ART, 8933 (31%) were excluded due to insufficient follow-up time and early lost to follow-up or death. The remaining 19 967 patients contributed 39 200 person-years on ART and 71 067 CD4 cell count measurements. The median baseline CD4 cell count was 114 cells/microl, with 35% having less than 100 cells/microl. Substantial intersite variation in baseline CD4 cell count was observed (range 61-181 cells/microl). Women had higher median baseline CD4 cell counts than men (121 vs. 104 cells/microl). The median CD4 cell count increased from 114 cells/microl at ART initiation to 230 [interquartile range (IQR) 144-338] at 6 months, 263 (IQR 175-376) at 1 year, 336 (IQR 224-472) at 2 years, 372 (IQR 242-537) at 3 years, 377 (IQR 221-561) at 4 years, and 395 (IQR 240-592) at 5 years. In multivariable models, baseline CD4 cell count was the most important determinant of subsequent CD4 cell count trajectories. CONCLUSION: These data demonstrate robust and sustained CD4 response to ART among patients remaining on therapy. Public health and programmatic interventions leading to earlier HIV diagnosis and initiation of ART could substantially improve patient outcomes in resource-limited settings.
Resumo:
Heterogeneous materials are ubiquitous in nature and as synthetic materials. These materials provide unique combination of desirable mechanical properties emerging from its heterogeneities at different length scales. Future structural and technological applications will require the development of advanced light weight materials with superior strength and toughness. Cost effective design of the advanced high performance synthetic materials by tailoring their microstructure is the challenge facing the materials design community. Prior knowledge of structure-property relationships for these materials is imperative for optimal design. Thus, understanding such relationships for heterogeneous materials is of primary interest. Furthermore, computational burden is becoming critical concern in several areas of heterogeneous materials design. Therefore, computationally efficient and accurate predictive tools are highly essential. In the present study, we mainly focus on mechanical behavior of soft cellular materials and tough biological material such as mussel byssus thread. Cellular materials exhibit microstructural heterogeneity by interconnected network of same material phase. However, mussel byssus thread comprises of two distinct material phases. A robust numerical framework is developed to investigate the micromechanisms behind the macroscopic response of both of these materials. Using this framework, effect of microstuctural parameters has been addressed on the stress state of cellular specimens during split Hopkinson pressure bar test. A voronoi tessellation based algorithm has been developed to simulate the cellular microstructure. Micromechanisms (microinertia, microbuckling and microbending) governing macroscopic behavior of cellular solids are investigated thoroughly with respect to various microstructural and loading parameters. To understand the origin of high toughness of mussel byssus thread, a Genetic Algorithm (GA) based optimization framework has been developed. It is found that two different material phases (collagens) of mussel byssus thread are optimally distributed along the thread. These applications demonstrate that the presence of heterogeneity in the system demands high computational resources for simulation and modeling. Thus, Higher Dimensional Model Representation (HDMR) based surrogate modeling concept has been proposed to reduce computational complexity. The applicability of such methodology has been demonstrated in failure envelope construction and in multiscale finite element techniques. It is observed that surrogate based model can capture the behavior of complex material systems with sufficient accuracy. The computational algorithms presented in this thesis will further pave the way for accurate prediction of macroscopic deformation behavior of various class of advanced materials from their measurable microstructural features at a reasonable computational cost.