925 resultados para SYNTHASE-DEFICIENT MICE


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nicotianamine synthase (NAS), the key enzyme in the biosynthetic pathway for the mugineic acid family of phytosiderophores, catalyzes the trimerization of S-adenosylmethionine to form one molecule of nicotianamine. We purified NAS protein and isolated the genes nas1, nas2, nas3, nas4, nas5-1, nas5-2, and nas6, which encode NAS and NAS-like proteins from Fe-deficient barley (Hordeum vulgare L. cv Ehimehadaka no. 1) roots. Escherichia coli expressing nas1 showed NAS activity, confirming that this gene encodes a functional NAS. Expression of nas genes as determined by northern-blot analysis was induced by Fe deficiency and was root specific. The NAS genes form a multigene family in the barley and rice genomes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Liver-specific and nonliver-specific methionine adenosyltransferases (MATs) are products of two genes, MAT1A and MAT2A, respectively, that catalyze the formation of S-adenosylmethionine (AdoMet), the principal biological methyl donor. Mature liver expresses MAT1A, whereas MAT2A is expressed in extrahepatic tissues and is induced during liver growth and dedifferentiation. To examine the influence of MAT1A on hepatic growth, we studied the effects of a targeted disruption of the murine MAT1A gene. MAT1A mRNA and protein levels were absent in homozygous knockout mice. At 3 months, plasma methionine level increased 776% in knockouts. Hepatic AdoMet and glutathione levels were reduced by 74 and 40%, respectively, whereas S-adenosylhomocysteine, methylthioadenosine, and global DNA methylation were unchanged. The body weight of 3-month-old knockout mice was unchanged from wild-type littermates, but the liver weight was increased 40%. The Affymetrix genechip system and Northern and Western blot analyses were used to analyze differential expression of genes. The expression of many acute phase-response and inflammatory markers, including orosomucoid, amyloid, metallothionein, Fas antigen, and growth-related genes, including early growth response 1 and proliferating cell nuclear antigen, is increased in the knockout animal. At 3 months, knockout mice are more susceptible to choline-deficient diet-induced fatty liver. At 8 months, knockout mice developed spontaneous macrovesicular steatosis and predominantly periportal mononuclear cell infiltration. Thus, absence of MAT1A resulted in a liver that is more susceptible to injury, expresses markers of an acute phase response, and displays increased proliferation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ga2 mutant of Arabidopsis thaliana is a gibberellin-deficient dwarf. Previous biochemical studies have suggested that the ga2 mutant is impaired in the conversion of copalyl diphosphate to ent-kaurene, which is catalyzed by ent-kaurene synthase (KS). Overexpression of the previously isolated KS cDNA from pumpkin (Cucurbita maxima) (CmKS) in the ga2 mutant was able to complement the mutant phenotype. A genomic clone coding for KS, AtKS, was isolated from A. thaliana using CmKS cDNA as a heterologous probe. The corresponding A. thaliana cDNA was isolated and expressed in Escherichia coli as a fusion protein. The fusion protein showed enzymatic activity that converted [3H]copalyl diphosphate to [3H]ent-kaurene. The recombinant AtKS protein derived from the ga2–1 mutant is truncated by 14 kD at the C-terminal end and does not contain significant KS activity in vitro. Sequence analysis revealed that a C-2099 to T base substitution, which converts Gln-678 codon to a stop codon, is present in the AtKS cDNA from the ga2–1 mutant. Taken together, our results show that the GA2 locus encodes KS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Peppermint (Mentha × piperita L.) was independently transformed with a homologous sense version of the 1-deoxy-d-xylulose-5-phosphate reductoisomerase cDNA and with a homologous antisense version of the menthofuran synthase cDNA, both driven by the CaMV 35S promoter. Two groups of transgenic plants were regenerated in the reductoisomerase experiments, one of which remained normal in appearance and development; another was deficient in chlorophyll production and grew slowly. Transgenic plants of normal appearance and growth habit expressed the reductoisomerase transgene strongly and constitutively, as determined by RNA blot analysis and direct enzyme assay, and these plants accumulated substantially more essential oil (about 50% yield increase) without change in monoterpene composition compared with wild-type. Chlorophyll-deficient plants did not afford detectable reductoisomerase mRNA or enzyme activity and yielded less essential oil than did wild-type plants, indicating cosuppression of the reductoisomerase gene. Plants transformed with the antisense version of the menthofuran synthase cDNA were normal in appearance but produced less than half of this undesirable monoterpene oil component than did wild-type mint grown under unstressed or stressed conditions. These experiments demonstrate that essential oil quantity and quality can be regulated by metabolic engineering. Thus, alteration of the committed step of the mevalonate-independent pathway for supply of terpenoid precursors improves flux through the pathway that leads to increased monoterpene production, and antisense manipulation of a selected downstream monoterpene biosynthetic step leads to improved oil composition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

SJL mice spontaneously develop pre-B-cell lymphoma that we hypothesized might stimulate macrophages to produce nitric oxide (NO.). Transplantation of an aggressive lymphoma (RcsX) was used to induce tumor formation. Urinary nitrate excretion was measured as an index of NO. production and was found to increase 50-fold by 13 days after tumor injection. NO. production was prevented by the addition of a nitric oxide synthase (NOS) inhibitor. The expression of inducible NOS (iNOS) in various tissues was estimated by Western blot analysis and localized by immunohistochemistry. The synthase was detected in the spleen, lymph nodes, and liver of treated but not control mice. To assess whether the iNOS-staining cells were macrophages, spleen sections from ResX-bearing animals were costained with anti-iNOS antibody and the anti-macrophage antibody moma-2. Expression of iNOS was found to be limited to a subset of the macrophage population. The concentration of gamma-interferon, a cytokine known to induce NO. production by macrophages, in the serum of tumor-bearing mice, was measured and found to be elevated 25-fold above untreated mice. The ability of ResX-activated macrophages to inhibit splenocyte growth in primary culture was estimated and macrophage-derived NO. was found to inhibit cell division 10-fold. Our findings demonstrate that ResX cells stimulate NO. production by macrophages in the spleen and lymph nodes of SJL mice, and we believe this experimental model will prove useful for study of the toxicological effects of NO. under physiological conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The influx of calcium into the postsynaptic neuron is likely to be an important event in memory formation. Among the mechanisms that nerve cells may use to alter the time course or size of a spike of intracellular calcium are cytosolic calcium binding or "buffering" proteins. To consider the role in memory formation of one of these proteins, calbindin D28K, which is abundant in many neurons, including the CA1 pyramidal cells of the hippocampus, transgenic mice deficient in calbindin D28K have been created. These mice show selective impairments in spatial learning paradigms and fail to maintain long-term potentiation. These results suggest a role for calbindin D28K protein in temporally extending a neuronal calcium signal, allowing the activation of calcium-dependent intracellular signaling pathways underlying memory function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cytolytic lymphocytes are of cardinal importance in the recovery from primary viral infections. Both natural killer cells and cytolytic T cells mediate at least part of their effector function by target cell lysis and DNA fragmentation. Two proteins, perforin and granzyme B, contained within the cytoplasmic granules of these cytolytic effector cells have been shown to be directly involved in these processes. A third protein contained within these granules, granzyme A, has so far not been attributed with any biological relevance. Using mice deficient for granzyme A, we show here that granzyme A plays a crucial role in recovery from the natural mouse pathogen, ectromelia, by mechanisms other than cytolytic activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For catalytic activity, nitric oxide synthases (NOSs) must be dimeric. Previous work revealed that the requirements for stable dimerization included binding of tetrahydrobiopterin (BH4), arginine, and heme. Here we asked what function is served by dimerization. We assessed the ability of individually inactive mutants of mouse inducible NOS (iNOS; NOS2), each deficient in binding a particular cofactor or cosubstrate, to complement each other by generating NO upon cotransfection into human epithelial cells. The ability of the mutants to homodimerize was gauged by gel filtration and/or PAGE under partially denaturing conditions, both followed by immunoblot. Their ability to heterodimerize was assessed by coimmunoprecipitation. Heterodimers that contained only one COOH-terminal hemimer and only one BH4-binding site could both form and function, even though the NADPH-, FAD-, and FMN-binding domains (in the COOH-terminal hemimer) and the BH4-binding sites (in the NH2-terminal hemimer) were contributed by opposite chains. Heterodimers that contained only one heme-binding site (Cys-194) could also form, either in cis or in trans to the nucleotide-binding domains. However, for NO production, both chains had to bind heme. Thus, NO production by iNOS requires dimerization because the active site requires two hemes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Macrophages secrete a variety of proteinases that are thought to participate in remodeling of the extracellular matrix associated with inflammatory processes. We have eliminated expression of the macrophage metalloelastase (MME) gene by targeted disruption to assess the role of this protein in macrophage-mediated proteolysis. We found that the macrophages of MME-deficient (MME-/-) mice have a markedly diminished capacity to degrade extracellular matrix components. In addition, MME-/- macrophages are essentially unable to penetrate reconstituted basement membranes in vitro and in vivo. MME is therefore required for macrophage-mediated extracellular matrix proteolysis and tissue invasion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The c-rel protooncogene encodes a subunit of the NF-kappa B-like family of transcription factors. Mice lacking Rel are defective in mitogenic activation of B and T lymphocytes and display impaired humoral immunity. In an attempt to identify changes in gene expression that accompany the T-cell stimulation defects associated with the loss of Rel, we have examined the expression of cell surface activation markers and cytokine production in mitogen-stimulated Rel-/- T cells. The expression of cell surface markers including the interleukin 2 receptor alpha (IL-2R alpha) chain (CD25), CD69 and L-selectin (CD62) is normal in mitogen-activated Rel-/- T cells, but cytokine production is impaired. In Rel-/- splenic T cell cultures stimulated with phorbol 12-myristate 13-acetate and ionomycin, the levels of IL-3, IL-5, granulocyte- macrophage colony-stimulating factor (GM-CSF), tumor necrosis factor alpha (TNF-alpha), and gamma interferon (IFN-gamma) were only 2- to 3-fold lower compared with normal T cells. In contrast, anti-CD3 and anti-CD28 stimulated Rel-/- T cells, which fail to proliferate, make little or no detectable cytokines. Exogenous IL-2, which restitutes the proliferative response of the anti-CD3- and anti-CD28-treated Rel-/- T cells, restores production of IL-5, TNF-alpha, and IFN-gamma, but not IL-3 and GM-CSF expression to approximately normal levels. In contrast to mitogen-activated Rel-/- T cells, lipopolysaccharide-stimulated Rel-/- macrophages produce higher than normal levels of GM-CSF. These findings establish that Rel can function as an activator or repressor of gene expression and is required by T lymphocytes for production of IL-3 and GM-CSF.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The endothelial nitric oxide synthase (ec-NOS) plays a key role in the transduction of signals from the bloodstream to the underlying smooth muscle. ecNOS undergoes a complex series of covalent modifications, including myristoylation and palmitoylation, which appear to play a role in ecNOS membrane association. Mutagenesis of the myristoylation site, which prevents both myristoylation and palmitoylation, blocks ecNOS targeting to cell membranes. Further, as described for some G-protein alpha subunits, both membrane association and palmitoylation of ecNOS are dynamically regulated: in response to agonists, the enzyme undergoes partial redistribution to the cell cytosol concomitant with depalmitoylation. To clarify the role of palmitoylation in determining ecNOS subcellular localization, we have constructed palmitoylation-deficient mutants of ecNOS. Serine was substituted for cysteine at two potential palmitoylation sites (Cys-15 and Cys-26) by site-directed mutagenesis. Immunoprecipitation of ecNOS mutants following cDNA transfection and biosynthetic labeling with [3H]palmitate revealed that mutagenesis of either cysteine residue attenuated palmitoylation, whereas replacement of both residues completely eliminated palmitoylation. Analysis of N-terminal deletion mutations of ecNOS demonstrated that the region containing these two cysteine residues is both necessary and sufficient for enzyme palmitoylation. The cysteines thus identified as the palmitoylation sites for ecNOS are separated by an unusual (Gly-Leu)5 sequence and appear to define a sequence motif for dual acylation. We analyzed the subcellular distribution of ecNOS mutants by differential ultracentrifugation and found that mutagenesis of the ecNOS palmitoylation sites markedly reduced membrane association of the enzyme. These results document that ecNOS palmitoylation is an important determinant for the subcellular distribution of ecNOS and identify a new motif for the reversible palmitoylation of signaling proteins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transgenic and gene knockout techniques allow for in vivo study of the consequences of adding or subtracting specific genes. However, in some instances, such as the study of lethal mutations or of the physiological consequences of changing gene expression, turning on and off an introduced gene at will would be advantageous. We have used cytochrome p450 1A1 promoter to drive expression of the human apolipoprotein E (apoE) gene in transgenic mice. In six independent lines, robust expression of the transgene depended upon injection of the inducer beta-naphthoflavone, whereas the seventh line had high basal expression that was augmented further by the inducer. The low level of basal expression in an inducer-dependent line was confirmed upon breeding the transgene onto the hypercholesterolemic apoE-deficient background. In the basal state transgene expression was physiologically insignificant, as these mice were as hypercholesterolemic as their nontransgenic apoE-deficient littermates. When injected with the inducer, plasma cholesterol levels of the transgenic mice decreased dramatically as apoE expression was induced to yield greater than physiological levels in plasma. The inducer could pass transplacentally from an injected mother to her fetuses with concomitant induction of fetal transgene mRNA. Inducer could also pass via breast milk from an injected mother to her suckling neonatal pups, giving rise to the induction of human apoE in neonate plasma. These finding suggest a strategy to temporarily ameliorate genetic deficiencies that would otherwise lead to fetal or neonatal lethality.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have analyzed the role of chitin, a cell-wall polysaccharide, in the virulence of Candida albicans. Mutants with a 5-fold reduction in chitin were obtained in two ways: (i) by selecting mutants resistant to Calcofluor, a fluorescent dye that binds to chitin and inhibits growth, and (ii) by disrupting CHS3, the C. albicans homolog of CSD2/CAL1/DIT101/KT12, a Saccharomyces cerevisiae gene required for synthesis of approximately 90% of the cell-wall chitin. Chitin-deficient mutants have no obvious alterations in growth rate, sugar assimilation, chlamydospore formation, or germ-tube formation in various media. When growing vegetatively in liquid media, the mutants tend to clump and display minor changes in morphology. Staining of cells with the fluorescent dye Calcofluor indicates that CHS3 is required for synthesis of the chitin rings found on the surface of yeast cells but not formation of septa in either yeast cells or germ tubes. Despite their relatively normal growth, the mutants are significantly less virulent than the parental strain in both immunocompetent and immunosuppressed mice; at 13 days after infection, survival was 95% in immunocompetent mice that received chs3/chs3 cells and 10% in immunocompetent mice that received an equal dose of chs3/CHS3 cells. Chitin-deficient strains can colonize the organs of infected mice, suggesting that the reduced virulence of the mutants is not due to accelerated clearing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have generated transgenic mice bearing the diphtheria toxin A chain (DTA) gene under the control of granzyme A (GrA) promoter sequences (GrA-DTA). GrA is expressed in activated cytotoxic cells but not in their immediate progenitors. These GrA-DTA mice are deficient in cytotoxic functions, indicating that most cytotoxic cells express GrA in vivo. Surprisingly, one founder strain containing a multicopy GrA-DTA insert show a marked and selective deficiency in CD8+ cells in peripheral lymphoid organs. This depletion was not observed in thymus, where the distribution of CD4+ and CD8+ cells is normal. Moreover, the emigration of T cells from thymus is normal, indicating that the depletion occurs in the periphery. GrA-DTA mice should be useful as models to dissect the role of cytotoxic cells in immune responses and as recipients of normal and neoplastic hematopoietic cells. The selective depletion of CD8+ cells in one founder strain could have implications for postthymic T-cell development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The neuronal nitric oxide synthase (nNOS) has been successfully overexpressed in Escherichia coli, with average yields of 125-150 nmol (20-24 mg) of enzyme per liter of cells. The cDNA for nNOS was subcloned into the pCW vector under the control of the tac promotor and was coexpressed with the chaperonins groEL and groES in the protease-deficient BL21 strain of E. coli. The enzyme produced is replete with heme and flavins and, after overnight incubation with tetrahydrobiopterin, contains 0.7 pmol of tetrahydrobiopterin per pmol of nNOS. nNOS is isolated as a predominantly high-spin heme protein and demonstrates spectral properties that are identical to those of nNOS isolated from stably transfected human kidney 293 cells. It binds N omega-nitroarginine dependent on the presence of bound tetrahydrobiopterin and exhibits a Kd of 45 nM. The enzyme is completely functional; the specific activity is 450 nmol/min per mg. This overexpression system will be extremely useful for rapid, inexpensive preparation of large amounts of active nNOS for use in mechanistic and structure/function studies, as well as for drug design and development.