947 resultados para STRAIN HARDENING


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Comparative study on growth of fry in nursery system of Genetically Improved Farmed Tilapia (GIFT) and Existing strain of Nile tilapia (Oreochromis niloticus) was performed. The trials were conducted in a series of hapa for two months. The initial mean weight of GIFT and Existing strains of tilapia were 1.03 and 1.12g, respectively and the stocking density for both the strains was maintained at 150/m³. Fishes were fed with supplementary feed 31.29% of protein level. After two months the final cumulative mean weight of GIFT and Existing strain were observed to be 8.38 and 5.51g, respectively. The net gain for weight of GIFT and existing strain were estimated to be 666% and 368% and the mean survival were 95.75% and 81.25%, respectively. The GIFT strain showed significantly (P<0.05) higher net gain in growth in weight and also higher (P<0.01) survival than that of existing strain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A method is described for measuring the mechanical properties of polymers in compression at strain rates in the range approximately 300-500 s-1. A gravity-driven pendulum is used to load a specimen on the end of an instrumented Hopkinson output bar and the results are processed by a microcomputer. Stress-strain curves up to high strains are presented for polycarbonate, polyethersulphone and high density polyethylene over a range of temperatures. The value of yield stress, for all three polymers, was found to vary linearly with log (strain rate) at strain rates up to 500 s-1. © 1985.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of varying both the aspect ratio and the coefficient of friction of contacts with elliptical geometry on their elastic shakedown performance has been examined theoretically for surfaces with two types of subsurface hardness or strength profiles. In stepwise hardening the hard layer is of uniform strength while in linear hardening its strength reduces from a maximum at the surface to that of the core at the base of the hardened layer. The shakedown load is expressed as the ratio of the maximum Hertzian pressure to the strength of the core material. As the depth of hardening, expressed as a multiple of the elliptical semi-axis, is increased so the potential shakedown load increases from a level that is appropriate to a uniform half-space of unhardened material to a value reflecting the hardness of the surface and near-surface material. In a step-hardened material, the shakedown limit for a surface 'pummelled' by the passage of a sequence of such loads reaches a cut-off or plateau value, which cannot be exceeded by further increases in hardening depth irrespective of the value of the friction coefficient. For a linear-hardened material the corresponding plateau is approached asymptotically. The work confirms earlier results on the upper bounds on shakedown of both point and line contacts and provides numerical values of shakedown loads for intermediate geometries. In general, the case depth required to achieve a given shakedown limit reduces in moving from a transversely moving nominal line load to an axisymmetric point load.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The yield behaviour of two aluminum alloy foams (Alporas and Duocel) has been investigated for a range of axisymmetric compressive stress states. The initial yield surface has been measured, and the evolution of the yield surface has been explored for uniaxial and hydrostatic stress paths. It is found that the hydrostatic yield strength is of similar magnitude to the uniaxial yield strength. The yield surfaces are of quadratic shape in the stress space of mean stress versus effective stress, and evolve without corner formation. Two phenomenological isotropic constitutive models for the plastic behaviour are proposed. The first is based on a geometrically self-similar yield surface while the second is more complex and allows for a change in shape of the yield surface due to differential hardening along the hydrostatic and deviatoric axes. Good agreement is observed between the experimentally measured stress versus strain responses and the predictions of the models.