941 resultados para SONOCHEMICAL DEPOSITION
Resumo:
Mature pregnant crossbred ewes (n = 90) were used in a randomized complete block design experiment and were assigned to 1 of 3 winter-feeding systems differing in primary feed source: haylage (HL), limit-fed corn (CN), or limit-fed dried distillers grains (DDGS). Effects of these winter-feeding strategies on postweaning progeny performance were determined. Lamb progeny (n = 96) were weaned at 61 +/- 4 d of age and fed a common high-concentrate diet. Lambs were assigned to feedlot pen (n = 18) based on dam mid-gestation pen. Growth rate, DMI, and ADG were determined for the first 40 d of the finishing period. At 96 +/- 4 d of age, 1 wether lamb was randomly selected from each pen (n = 18) for a glucose tolerance test. The experiment was terminated, and lambs were slaughtered individually when they were determined to have achieved 0.6-cm 12th-rib fat thickness. After a 24-h chill, carcass data were collected and a 2.54-cm chop was removed from each lamb from the LM posterior to the 12th rib for ether extract analysis. Additional carcass measurements of bone, muscle, and fat from the shoulder, rack, loin, and leg were collected on 35 carcasses. At weaning, lamb BW was not different among treatments, whereas final BW tended to be greater (P = 0.09) for lambs from ewes fed DDGS and CN during gestation than from those fed HL. Overall lamb growth rate from birth to slaughter was not different among treatments. Lambs from ewes fed DDGS vs. CN or HL tended to have a greater initial insulin response (P = 0.09). Dressing percent was less (P = 0.04) in lambs from ewes fed DDGS, but no difference (P = 0.16) was detected in HCW among treatments. As expected, 12th rib fat thickness was similar among treatments, whereas LM area was largest to smallest (P = 0.05) in lambs from ewes fed CN, HL, and DDGS, respectively. Proportion of internal fat tended to be greatest to smallest (P = 0.06) in lambs from ewes fed DDGS, CN, and HL, respectively. Calculated boneless trimmed retail cuts percentage was less (P = 0.04) in lambs from ewes fed DDGS than CN or HL. Loin muscle weight as a percentage of wholesale cut tended (P = 0.10) to be greater in lambs from ewes fed CN and HL than DDGS, whereas other muscle, bone, and fat weights and proportions were similar (P > 0.24) among treatments. Prepartum diet during mid to late gestation of ewes altered postnatal fat and muscle deposition and may be associated with alterations in insulin sensitivity of progeny.
Resumo:
Silicon (Si) accumulation in organs and cells is one of the most prominent characteristics of plants of the family Poaceae. Many species from this family are used as forage plants for animal feeding. The present study investigates in Brachiaria brizantha (Hochst. ex A. Rich.) Stapf. cv. Marandu: (1) the dry matter production and Si content in shoot due to soil Si fertilizations; (2) the Si distribution among shoot parts; and (3) the silica deposition and localization in leaves. Plants of B. brizantha cv. Marandu were grown under contrasting Si supplies in soil and nutrient solution. Silica deposition and distribution in grass leaf blades were observed using light microscope and scanning electron microscope equipped with an energy dispersive X-ray spectrometer (SEM-EDXS). Silicon concentration in the B. brizantha shoot increased according to the Si supply. Silicon in grass leaves decreased following the order: mature leaf blades > recently expanded leaf blades > non-expanded leaf blades. Silicon accumulates mainly on the upper (adaxial) epidermis of the grass leaf blades and, especially, on the bulliform cells. The Si distribution on adaxial leaf blade surface is non uniform and reflects a silica deposition exclusively on the cell wall of bulliform cells.
Resumo:
Purpose Among environmental factors governing innumerous processes that are active in estuarine environments, those of edaphic character have received special attention in recent studies. With the objectives of determining the spatial patterns of soil attributes and components across different mangrove forest landscapes and obtaining additional information on the cause-effect relationships between these variables and position within the estuary, we analyzed several soil attributes in 31 mangrove soil profiles from the state of So Paulo (Guaruja, Brazil). Materials and methods Soil samples were collected at low tide along two transects within the CrumahA(0) mangrove forest. Samples were analyzed to determine pH, Eh, salinity, and the percentages of sand, silt, clay, total organic carbon (TOC), and total S. Mineralogy of the clay fraction (< 2 mm) was also studied by X-ray diffraction analysis, and partitioning of solid-phase Fe was performed by sequential extraction. Results and discussion The results obtained indicate important differences in soil composition at different depths and landscape positions, causing variations in physicochemical parameters, clay mineralogy, TOC contents, and iron geochemistry. The results also indicate that physicochemical conditions may vary in terms of different local microtopographies. Soil salinity was determined by relative position in relation to flood tide and transition areas with highlands. The proportions of TOC and total S are conditioned by the sedimentation of organic matter derived from vegetation and by the prevailing redox conditions, which clearly favored intense sulfate reduction in the soils (similar to 80% of the total Fe is Fe-pyrite). Particle-size distribution is conditioned by erosive/deposition processes (present and past) and probably by the positioning of ancient and reworked sandy ridges. The existing physicochemical conditions appear to contribute to the synthesis (smectite) and transformation (kaolinite) of clay minerals. Conclusions The results demonstrate that the position of soils in the estuary greatly affects soil attributes. Differences occur even at small scales (meters), indicating that both edaphic (soil classification, soil mineralogy, and soil genesis) and environmental (contamination and carbon stock) studies should take such variability into account.
Resumo:
Plant volatiles function as important signals for herbivores, parasitoids, predators, and neighboring plants. Herbivore attack can dramatically increase plant volatile emissions in many species. However, plants do not only react to herbivore-inflicted damage, but also already start adjusting their metabolism upon egg deposition by insects. Several studies have found evidence that egg deposition itself can induce the release of volatiles, but little is known about the effects of oviposition on the volatiles released in response to subsequent herbivory. To study this we measured the effect of oviposition by Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) moths on constitutive and herbivore-induced volatiles in maize (Zea mays L.). Results demonstrate that egg deposition reduces the constitutive emission of volatiles and suppresses the typical burst of inducible volatiles following mechanical damage and application of caterpillar regurgitant, a treatment that mimics herbivory. We discuss the possible mechanisms responsible for reducing the plant`s signaling capacity triggered by S. frugiperda oviposition and how suppression of volatile organic compounds can influence the interaction between the plant, the herbivore, and other organisms in its environment. Future studies should consider oviposition as a potential modulator of plant responses to insect herbivores.
Resumo:
In stored grains, smaller depositions and great variation with respect to theoretical insecticide doses are frequently found. The objective of this work was to study the effectiveness of the standard method (ISO 5682/1-1996) employed to evaluate hydraulic nozzles used in stored corn and wheat grain protection experiments. The transversal volumetric distribution and droplet spectrum of a model TJ-60 8002EVS nozzle were determined in order to calibrate a spraying system for an application rate of 5 L/t and to obtain theoretical concentrations of 10 and 0.5 mg/kg of fenitrothion and esfenvalerate, respectively. After treatment, the corn and wheat grains were processed and deposition was analyzed by gas chromatography. The type of grain did not have any influence on insecticide deposition and was dependent upon insecticide only. The insecticide deposits on the grains only reached 42.1 and 38.2% of the intended theoretical values for fenitrothion and esfenvalerate concentrations, respectively. These results demonstrate the ineffectiveness of the standard evaluation method for hydraulic nozzles employed in stored grain protection experiments.
Resumo:
Diamond-like carbon (DLC), also known as amorphous hydrogenated carbon (a-C:H), are a class of materials with excellent mechanical, tribological and biological properties. When the DLC films are enhanced with other elements, all of these properties can be changed within a certain range. In this work, reactive magnetron sputtering was used to deposit W-DLC (hydrogenated tungsten carbide) films on Ti6A14V (implant material). Many films were made using pure tungsten (99.99%) target and different plasmas processes, with different ratio among argon and methane. It was possible to change the films composition (from pure amorphous carbon to carbon enhanced with tungsten) according to ratio of argon and methane plasma. Between all films processed, the carbon films enhanced with tungsten showed good results in the ""in vitro"" cytotoxicity testing. Raman spectroscopy was used to analyze the chemical bonds kinds and the chemical bonds quantities. The Rutherford Back Scattering (RBS) was used to analyze the films compositions. The chemical inertness was analyzed by scanning voltametry. W-DLC thin films obtained in these processes have low roughness, high chemical resistance, good adhesion and show a high biocompatibility, when compared with common DLC thin films. Hence we have concluded that the tungsten concentrations in the DLC films make an important role to improve the properties of the DLC layers. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The aim of this study was to compare the effects of Low-intensity Laser Therapy (LILT) and Light Emitting Diode Therapy (LEDT) of low intensity on the treatment of lesioned Achilles tendon of rats. The experimental model consisted of a partial mechanical lesion on the right Achilles tendon deep portion of 90 rats. One hour after the lesion, the injured animals received applications of laser/LED (685, 830/630, 880 nm), and the same procedure was repeated at 24-h intervals, for 10 days. The healing process and deposition of collagen were evaluated based on a polarization microscopy analysis of the alignment and organization of collagen bundles, through the birefringence (optical retardation-OR). The results showed a real efficiency of treatments based on LEDT and confirmed that LILT seems to be effective on healing process. Although absence of coherence of LED light, tendon healing treatment with this feature was satisfactory and can certainly replace treatments based on laser light applications. Applications of infrared laser at 830 nm and LED 880 nm were more efficient when the aim is a good organization, aggregation, and alignment of the collagen bundles on tendon healing. However, more research is needed for a safety and more efficient determination of a protocol with LED.
Resumo:
Catalytic activities and deactivation characteristics of oxides-supported nickel catalysts for the reaction of methane reforming with carbon dioxide were investigated. The dynamic carbon deposition on various nickel catalysts was also studied by a thermogravimetric method. Among the catalysts prepared, Ni/La2O3, Ni/alpha-Al2O3, Ni/SiO2, and Ni/CeO2 showed very high CH4 and CO2 conversions and moderate deactivation whereas Ni/MgO and Ni/TiO2 had lower conversions when the Ni reduction was conducted at 500 degrees C. When Ni/MgO catalyst was reduced at 800 degrees C, it exhibited not only comparable conversions of CH4 and CO2 with other active catalysts but also much longer period of stability without deactivation. The amount of carbon deposited in Ni-based catalysts varied depending on the nature of support and followed the order of Ni/La2O3 > Ni/alpha-Al2O3 > Ni/SiO2 > Ni/MgO > Ni/CeO2 at 700 degrees C. The carbons formed on the catalyst surface showed different structural and chemical properties, and these in turn affected the catalytic activity of the catalysts.
Resumo:
The effects of the support phase and catalyst preparation methods on catalytic activity and carbon deposition were systematically investigated over nickel catalysts supported on Al2O3, SiO2 and MgO for the reforming reaction of methane with carbon dioxide. It is found that the pore structure of the support and metal-support interaction significantly affected the catalytic activity and coking resistance. Catalyst with well-developed porosity exhibited higher catalytic activity. Strong interaction between metal and the support made the catalyst more resistant to sintering and coking, thus resulting in a longer time of catalyst stability. (C) 1998 Elsevier Science B.V.
Resumo:
The catalytic activities of Ni/gamma-Al2O3 catalysts prepared using different nickel precursor compounds were studied for the reaction of methane reforming with CO2. It is found that the nickel precursor employed in the catalyst preparation plays an important role. The catalyst based on nickel nitrate exhibited higher catalytic activity and stability over a 24-h test period than the other two catalysts derived from nickel chloride and nickel acetylacetonate. A comprehensive characterisation of the catalysts showed that the weak interaction between Ni particles and gamma-Al2O3 resulted in more active sites on Ni nitrate-derived Ni/gamma-Al2O3 catalyst. Coking studies showed that carbon deposition on Ni catalysts derived from inorganic precursors (nitrate and chloride) were more severe than on the organic precursor-derived catalyst. However, the Ni nitrate-derived catalyst was found to have the highest stability (or lowest deactivation rate) mainly due to the active carbon species (-C-C-) of the resulting graphitic structure and their close contact with the metal particles. In contrast, the carbon formed on Ni-AA catalyst (from Ni acetylacetonate) is dominated by inactive -CO-C- species, thus leading to a rapid accumulation of carbon in this catalyst and more severe deactivation. (C) 1998 Elsevier Science B.V.
Resumo:
Aims The penetration of active ingredients from topically applied anti-inflammatory pharmaceutical products into tissues below the skin is the basis of their therapeutic efficacy. There is still controversy as to whether these agents are capable of direct penetration by diffusion through the tissues or whether redistribution in the systemic circulation is responsible for their tissue deposition below the application site. Methods The extent of direct penetration of salicylate from commercial ester and salt formulations into the dermal and subcutaneous tissue of human volunteers was determined using the technique of cutaneous microdialysis. We also examined differences in the extent of hydrolysis of the methylester of salicylate applied topically in human volunteers and in vitro skin diffusion cells using full-thickness skin and epidermal membranes. Results The present study showed that whilst significant levels of salicylate could be detected in the dermis and subcutaneous tissue of volunteers treated with the methylsalicylate formulation, negligible levels of salicylate were seen following application of the triethanolamine salicylate formulation. The tissue levels of salicylate from the methylsalicylate formulation were approx. 30-fold higher than the plasma concentrations. Conclusion The absorption and tissue concentration profiles for the commercial methylsalicylate formulation are indicative of direct tissue penetration and not solely redistribution by the systemic blood supply.
Resumo:
Immunolabeling is commonly used to localize antigens within frozen or paraffin tissue sections. We modified existing immunolabeling techniques to allow the detection of three antigens simultaneously within the one tissue section. The approach relies on the use of three monoclonal antibodies in sequential immunoperoxidase staining steps, each with colored substrates, resulting in the deposition of black, brown, and rose stains. The method is rapid and does not require novel techniques or materials. In this report, we demonstrate the colocalization of mast cell tryptase, neurofilament protein, and CD31 (platelet-endothelial cell adhesion molecule) or laminin in normal human skin and normal buccal mucosa, as an illustration of the power and simplicity of the multiple antigen localization technique.
Resumo:
Plants collected from diverse sites on subantarctic Macquarie Island varied by up to 30 parts per thousand in their leaf delta(15)N values. N-15 natural abundance of plants, soils, animal excrement and atmospheric ammonia suggest that the majority of nitrogen utilised by plants growing in the vicinity of animal colonies or burrows is animal-derived. Plants growing near scavengers and animal higher in the food chain had highly enriched delta(15)N values (mean = 12.9 parts per thousand), reflecting the highly enriched signature of these animals' excrement, while plants growing near nesting penguins and albatross, which have an intermediate food chain position, had less enriched delta(15)N values (> 6 parts per thousand). Vegetation in areas affected by rabbits had lower delta(15)N values (mean = 1.2 parts per thousand), while the highly depleted delta(15)N values (below -5 parts per thousand) of plants at upland plateau sites inland of penguin colonies, suggested that a portion of their nitrogen is derived from ammonia (mean N-15 = -10 parts per thousand) lost during the degradation of penguin guano. Vegetation in a remote area had delta(15)N values near -2 parts per thousand. These results contrast with arctic and subarctic studies that attribute large variations in plant N-15 values to nitrogen partitioning in nitrogen-limited environments. Here, plant N-15 reflects the N-15 Of the likely nitrogen sources utilised by plants.
Resumo:
Ni catalysts supported on gamma-Al2O3, CeO2 and CeO2-A1(2)O(3) systems were tested for catalytic CO2 reforming of methane into synthesis gas. Ni/CeO2-Al2O3 catalysts showed much better catalytic performance than either CeO2- or gamma-Al2O3-supported Ni catalysts. CeO2 as a support for Ni catalysts produced a strong metal-support interaction (SMSI), which reduced the catalytic activity and carbon deposition. However, CeO2 had positive effect on catalytic activity, stability, and carbon suppression when used as a promoter in Ni/gamma-Al2O3 catalysts for this reaction. A weight loading of 1-5 wt% CeO2 was found to be the optimum. Ni catalysts with CeO2 promoters reduced the chemical interaction between nickel and support, resulting in an increase in reducibility and stronger dispersion of nickel. The stability and less coking on CeO2-promoted catalysts are attributed to the oxidative properties of CeO2. (C) 1998 Elsevier Science B.V. All rights reserved.