978 resultados para SLOW
Resumo:
Inconsistencies about dynamic asymmetry between the on- and off-transient responses in .VO2 are found in the literature. Therefore the purpose of this study was to examine .VO2on- and off-transients during moderate- and heavy-intensity cycling exercise in trained subjects. Ten men underwent an initial incremental test for the estimation of ventilatory threshold (VT) and, on different days, two bouts of square-wave exercise at moderate (<VT) and heavy (>VT) intensities. .VO2 kinetics in exercise and recovery were better described by a single exponential model (<VT) or by a double exponential with two time delays (>VT). For moderate exercise, we found a symmetry of .VO2 kinetics between the on- and off-transients (i.e., fundamental component), consistent with a system manifesting linear control dynamics. For heavy exercise, a slow component superimposed on the fundamental phase was expressed in both the exercise and recovery, with similar parameter estimates. But the on-transient values of the time constant were appreciably faster than the associated off-transient, and independent of the work rate imposed (<VT and >VT). Our results do not support a dynamically linear system model of .VO2 during cycling exercise in the heavy-intensity domain.
Resumo:
The purpose of this study was to test the hypothesis that athletes having a slower oxygen uptake ( VO(2)) kinetics would benefit more, in terms of time spent near VO(2max), from an increase in the intensity of an intermittent running training (IT). After determination of VO(2max), vVO(2max) (i.e. the minimal velocity associated with VO(2max) in an incremental test) and the time to exhaustion sustained at vVO(2max) ( T(lim)), seven well-trained triathletes performed in random order two IT sessions. The two IT comprised 30-s work intervals at either 100% (IT(100%)) or 105% (IT(105%)) of vVO(2max) with 30-s recovery intervals at 50% of vVO(2max) between each repeat. The parameters of the VO(2) kinetics (td(1), tau(1), A(1), td(2), tau(2), A(2), i.e. time delay, time constant and amplitude of the primary phase and slow component, respectively) during the T(lim) test were modelled with two exponential functions. The highest VO(2) reached was significantly lower ( P<0.01) in IT(100%) run at 19.8 (0.9) km(.)h(-1) [66.2 (4.6) ml(.)min(-1.)kg(-1)] than in IT(105%) run at 20.8 (1.0) km(.)h(-1) [71.1 (4.9) ml(.)min(-1.)kg(-1)] or in the incremental test [71.2 (4.2) ml(.)min(-1.)kg(-1)]. The time sustained above 90% of VO(2max) in IT(105%) [338 (149) s] was significantly higher ( P<0.05) than in IT(100%) [168 (131) s]. The average T(lim) was 244 (39) s, tau(1) was 15.8 (5.9) s and td(2) was 96 (13) s. tau(1) was correlated with the difference in time spent above 90% of VO(2max) ( r=0.91; P<0.01) between IT(105%) and IT(100%). In conclusion, athletes with a slower VO(2) kinetics in a vVO(2max) constant-velocity test benefited more from the 5% rise of IT work intensity, exercising for longer above 90% of VO(2max) when the IT intensity was increased from 100 to 105% of vVO(2max).
Resumo:
BACKGROUND: Frailty, as defined by the index derived from the Cardiovascular Health Study (CHS index), predicts risk of adverse outcomes in older adults. Use of this index, however, is impractical in clinical practice. METHODS: We conducted a prospective cohort study in 6701 women 69 years or older to compare the predictive validity of a simple frailty index with the components of weight loss, inability to rise from a chair 5 times without using arms, and reduced energy level (Study of Osteoporotic Fractures [SOF index]) with that of the CHS index with the components of unintentional weight loss, poor grip strength, reduced energy level, slow walking speed, and low level of physical activity. Women were classified as robust, of intermediate status, or frail using each index. Falls were reported every 4 months for 1 year. Disability (> or =1 new impairment in performing instrumental activities of daily living) was ascertained at 4(1/2) years, and fractures and deaths were ascertained during 9 years of follow-up. Area under the curve (AUC) statistics from receiver operating characteristic curve analysis and -2 log likelihood statistics were compared for models containing the CHS index vs the SOF index. RESULTS: Increasing evidence of frailty as defined by either the CHS index or the SOF index was similarly associated with an increased risk of adverse outcomes. Frail women had a higher age-adjusted risk of recurrent falls (odds ratio, 2.4), disability (odds ratio, 2.2-2.8), nonspine fracture (hazard ratio, 1.4-1.5), hip fracture (hazard ratio, 1.7-1.8), and death (hazard ratio, 2.4-2.7) (P < .001 for all models). The AUC comparisons revealed no differences between models with the CHS index vs the SOF index in discriminating falls (AUC = 0.61 for both models; P = .66), disability (AUC = 0.64; P = .23), nonspine fracture (AUC = 0.55; P = .80), hip fracture (AUC = 0.63; P = .64), or death (AUC = 0.72; P = .10). Results were similar when -2 log likelihood statistics were compared. CONCLUSION: The simple SOF index predicts risk of falls, disability, fracture, and death as well as the more complex CHS index and may provide a useful definition of frailty to identify older women at risk of adverse health outcomes in clinical practice.
Resumo:
Verrucous carcinoma of the vagina is a rare neoplasm. This entity is a slow-growing, locally invasive but generally nonmetastasizing neoplasm, with a characteristic gross and microscopic appearance. We report a case of verrucous carcinoma of the vagina in a postmenopausal woman diagnosed 4 years after transvaginal hysterectomy for grade 4 uterine prolapse. We also discuss the differential diagnosis and treatment.Verrucous carcinoma of the vagina is a rare neoplasm. The differential diagnosis includes typical squamous cell carcinoma, warty carcinoma, and condyloma acuminatum. Surgery remains the most effective treatment.
Resumo:
The development of novel methods for parasitological diagnosis that are both highly sensitive and low in cost has been strongly recommended by the World Health Organization. In this study, a new technique for diagnosis of schistosomiasis mansoni is proposed based on the differential sedimentation of eggs when subjected to a slow continuous flux of 3% saline solution through a porous plaque. This influx suspends low-density faecal material, effectively cleaning the sample. The remaining sediment covering the porous plaque surface is then transferred to a glass slide and examined under a bright field microscope. Twelve Kato-Katz slides were used for comparison in the present study. Our results suggest that the saline gradient method detects a signifi-cantly higher number of eggs than the 12 Kato-Katz slides (p < 0.0001). We also found microscopic inspection to be quicker and easier with our newly described method. After cleaning the sample, the obtained sediment can also be conserved in a 10% formaldehyde solution and examined for at least 45 days later without statistically significant egg count differences.
Resumo:
There are two principal chemical concepts that are important for studying the naturalenvironment. The first one is thermodynamics, which describes whether a system is atequilibrium or can spontaneously change by chemical reactions. The second main conceptis how fast chemical reactions (kinetics or rate of chemical change) take place wheneverthey start. In this work we examine a natural system in which both thermodynamics andkinetic factors are important in determining the abundance of NH+4 , NO−2 and NO−3 insuperficial waters. Samples were collected in the Arno Basin (Tuscany, Italy), a system inwhich natural and antrophic effects both contribute to highly modify the chemical compositionof water. Thermodynamical modelling based on the reduction-oxidation reactionsinvolving the passage NH+4 -& NO−2 -& NO−3 in equilibrium conditions has allowed todetermine the Eh redox potential values able to characterise the state of each sample and,consequently, of the fluid environment from which it was drawn. Just as pH expressesthe concentration of H+ in solution, redox potential is used to express the tendency of anenvironment to receive or supply electrons. In this context, oxic environments, as thoseof river systems, are said to have a high redox potential because O2 is available as anelectron acceptor.Principles of thermodynamics and chemical kinetics allow to obtain a model that oftendoes not completely describe the reality of natural systems. Chemical reactions may indeedfail to achieve equilibrium because the products escape from the site of the rectionor because reactions involving the trasformation are very slow, so that non-equilibriumconditions exist for long periods. Moreover, reaction rates can be sensitive to poorly understoodcatalytic effects or to surface effects, while variables as concentration (a largenumber of chemical species can coexist and interact concurrently), temperature and pressurecan have large gradients in natural systems. By taking into account this, data of 91water samples have been modelled by using statistical methodologies for compositionaldata. The application of log–contrast analysis has allowed to obtain statistical parametersto be correlated with the calculated Eh values. In this way, natural conditions in whichchemical equilibrium is hypothesised, as well as underlying fast reactions, are comparedwith those described by a stochastic approach
Resumo:
Fission-track and (40)Ar/(39)Ar ages place time constraints on the exhumation of the North Himalayan nappe stack, the Indus Suture Zone and Molasse, and the Transhimalayan Batholith in eastern Ladakh (NW India). Results from this and previous studies on a north-south transect passing near Tso Morari Lake suggest that the SW-directed North Himalayan nappe stack (comprising the Mata, Tetraogal and Tso Morari nappes) was emplaced and metamorphosed by c. 50-45 Ma, and exhumed to moderately shallow depths (c. 10 km) by c. 45-40 Ma. From the mid-Eocene to the present, exhumation continued at a steady and slow rate except for the root zone of the Tso Morari nappe, which cooled faster than the rest of the nappe stack. Rapid cooling occurred at c. 20 Ma and is linked to brittle deformation along the normal Ribil-Zildat Fault concomitant with extrusion of the Crystalline nappe in the south. Data from the Indus Molasse suggest that sediments were still being deposited during the Miocene.
Resumo:
Purpose: Epilepsy surgery in young children with focal lesions offers a unique opportunity to study the impact of severe seizures on cognitive development during a period of maximal brain plasticity, if immediate control can be obtained. We studied 11 children with early refractory epilepsy (median onset, 7.5 months) due to focal lesion who were rendered seizure-free after surgery performed before the age of 6 years. Methods: The children were followed prospectively for a median of 5 years with serial neuropsychological assessments correlated with electroencephalography (EEG) and surgery-related variables. Results: Short-term follow-up revealed rapid cognitive gains corresponding to cessation of intense and propagated epileptic activity [two with early catastrophic epilepsy; two with regression and continuous spike-waves during sleep (CSWS) or frontal seizures]; unchanged or slowed velocity of progress in six children (five with complex partial seizures and frontal or temporal cortical malformations). Longer-term follow-up showed stabilization of cognitive levels in the impaired range in most children and slow progress up to borderline level in two with initial gains. Discussion: Cessation of epileptic activity after early surgery can be followed by substantial cognitive gains, but not in all children. In the short term, lack of catch-up may be explained by loss of retained function in the removed epileptogenic area; in the longer term, by decreased intellectual potential of genetic origin, irreversible epileptic damage to neural networks supporting cognitive functions, or reorganization plasticity after early focal lesions. Cognitive recovery has to be considered as a "bonus," which can be predicted in some specific circumstances.
Resumo:
The importance of direct and indirect alcohol markers to evaluate alcohol consumption in clinical and forensic settings is increasingly recognized. While some markers are used to prove abstinence from ethanol, other markers are suitable for detection of alcohol misuse. Phosphatidyl ethanol (PEth) is ranked among the latter. There is only little information about the correlation between PEth and other currently used markers (ethyl glucuronide, ethyl sulfate, carbohydrate deficient transferrin, gamma-glutamyl transpeptidase, and methanol) and about their decline during detoxification. To get more information, 18 alcohol-dependent patients in withdrawal therapy were monitored for these parameters in blood and urine for up to 19 days. There was no correlation between the different markers. PEth showed a rapid decrease at the beginning of the intervention, a slow decline after the first few days, and could still be detected after 19 days of abstinence from ethanol.
Resumo:
Isoniazid (INH), one of the most important drugs used in antituberculosis (anti-TB) treatment, is also the major drug involved in hepatotoxicity. Differences in INH-induced toxicity have been attributed to genetic variability at several loci, such as NAT2, CYP2E1, GSTM1 and GSTT1, that code for drug-metabolising enzymes. Our goal was to examine the polymorphisms in these enzymes as susceptibility factors to anti-TB drug-induced hepatitis in Brazilian individuals. In a case-control design, 167 unrelated active tuberculosis patients from the University Hospital of the Federal University of Rio de Janeiro, Brazil, were enrolled in this study. Patients with a history of anti-TB drug-induced acute hepatitis (cases with an increase to 3 times the upper limit of normal serum transaminases and symptoms of hepatitis) and patients with no evidence of anti-TB hepatic side effects (controls) were genotyped for NAT2, CYP2E1, GSTM1 and GSTT1 polymorphisms. Slow acetylators had a higher incidence of hepatitis than intermediate/rapid acetylators [22% (18/82) vs. 9.8% (6/61), odds ratio (OR), 2.86, 95% confidence interval (CI), 1.06-7.68, p = 0.04). Logistic regression showed that slow acetylation status was the only independent risk factor (OR 3.59, 95% CI, 2.53-4.64, p = 0.02) for the occurrence of anti-TB drug-induced hepatitis during anti-TB treatment with INH-containing schemes in Brazilian individuals.
Resumo:
Despite stringent requirements for drug development imposed by regulatory agencies, drug-induced liver injury (DILI) is an increasing health problem and a significant cause for failure to approve drugs, market withdrawal of commercialized medications, and adoption of regulatory measures. The pathogenesis is yet undefined, though the rare occurrence of idiosyncratic DILI (1/100,000–1/10,000) and the fact that hepatotoxicity often recurs after re-exposure to the culprit drug under different environmental conditions strongly points toward a major role for genetic variations in the underlying mechanism and susceptibility. Pharmacogenetic studies in DILI have to a large extent focused on genes involved in drug metabolism, as polymorphisms in these genes may generate increased plasma drug concentrations as well as lower clearance rates when treated with standard medication doses. A range of studies have identified a number of genetic variants in drug metabolism Phase I, II, and III genes, including cytochrome P450 (CYP) 2E1, N-acetyltransferase 2, UDP-glucuronosyltransferase 2B7, glutathione S-transferase M1/T1, ABCB11, and ABCC2, that enhance DILI susceptibility (Andrade et al., 2009; Agundez et al., 2011). Several metabolic gene variants, such as CYP2E1c1 and NAT2 slow, have been associated with DILI induced by specific drugs based on individual drug metabolism information. Others, such as GSTM1 and T1 null alleles have been associated with enhanced risk of DILI development induced by a large range of drugs. Hence, these variants appear to have a more general role in DILI susceptibility due to their role in reducing the cell's antioxidative capacity (Lucena et al., 2008). Mitochondrial superoxide dismutase (SOD2) and glutathione peroxidase 1 (GPX1) are two additional enzymes involved in combating oxidative stress, with specific genetic variants shown to enhance the risk of developing DILI
Resumo:
Generation of fluids during metamorphism can significantly influence the fluid overpressure, and thus the fluid flow in metamorphic terrains. There is currently a large focus on developing numerical reactive transport models, and with it follows the need for analytical solutions to ensure correct numerical implementation. In this study, we derive both analytical and numerical solutions to reaction-induced fluid overpressure, coupled to temperature and fluid flow out of the reacting front. All equations are derived from basic principles of conservation of mass, energy and momentum. We focus on contact metamorphism, where devolatilization reactions are particularly important owing to high thermal fluxes allowing large volumes of fluids to be rapidly generated. The analytical solutions reveal three key factors involved in the pressure build-up: (i) The efficiency of the devolatilizing reaction front (pressure build-up) relative to fluid flow (pressure relaxation), (ii) the reaction temperature relative to the available heat in the system and (iii) the feedback of overpressure on the reaction temperature as a function of the Clapeyron slope. Finally, we apply the model to two geological case scenarios. In the first case, we investigate the influence of fluid overpressure on the movement of the reaction front and show that it can slow down significantly and may even be terminated owing to increased effective reaction temperature. In the second case, the model is applied to constrain the conditions for fracturing and inferred breccia pipe formation in organic-rich shales owing to methane generation in the contact aureole.
Resumo:
Although it has long been known that genetic factors play a major role in shaping the electroencephalogram (EEG), progress on identifying the underlying genes has, until recently, been limited. Using quantitative trait loci (QTL) analyses several genomic loci affecting the sleep EEG could be mapped in the mouse. For three of these QTLs the responsible genes were identified leading to the implication of novel signaling pathways affecting EEG traits. Moreover, the insight that in the mouse the sleep-wake dependent dynamics in the expression of EEG slow waves during sleep is under strong genetic control has paved the way for candidate gene studies in humans investigating the contribution of specific polymorphism to the trait-like inter-individual differences in the susceptibility to sleep loss. Candidate gene studies in the mouse were also instrumental in establishing an alternative, noncircadian function for clock genes in the homeostatic regulation of sleep and modulating rhythmic EEG activity of thalamocortical origin. Future efforts should combine system genetics approaches in the mouse and genome-wide association studies in humans to facilitate uncovering the molecular pathways that shape brain activity.
Resumo:
INTRODUCTION We functionally analyzed a frameshift mutation in the SCN5A gene encoding cardiac Na(+) channels (Nav1.5) found in a proband with repeated episodes of ventricular fibrillation who presented bradycardia and paroxysmal atrial fibrillation. Seven relatives also carry the mutation and showed a Brugada syndrome with an incomplete and variable expression. The mutation (p.D1816VfsX7) resulted in a severe truncation (201 residues) of the Nav1.5 C-terminus. METHODS AND RESULTS Wild-type (WT) and mutated Nav1.5 channels together with hNavβ1 were expressed in CHO cells and currents were recorded at room temperature using the whole-cell patch-clamp. Expression of p.D1816VfsX7 alone resulted in a marked reduction (≈90%) in peak Na(+) current density compared with WT channels. Peak current density generated by p.D1816VfsX7+WT was ≈50% of that generated by WT channels. p.D1816VfsX7 positively shifted activation and inactivation curves, leading to a significant reduction of the window current. The mutation accelerated current activation and reactivation kinetics and increased the fraction of channels developing slow inactivation with prolonged depolarizations. However, late INa was not modified by the mutation. p.D1816VfsX7 produced a marked reduction of channel trafficking toward the membrane that was not restored by decreasing incubation temperature during cell culture or by incubation with 300 μM mexiletine and 5 mM 4-phenylbutirate. CONCLUSION Despite a severe truncation of the C-terminus, the resulting mutated channels generate currents, albeit with reduced amplitude and altered biophysical properties, confirming the key role of the C-terminal domain in the expression and function of the cardiac Na(+) channel.
Resumo:
Abstract This work investigates the outcome of the interaction of the multiple causes of selection acting on dispersal in metapopulations. Dispersal, defined here as the ability of individuals to move out of their natal population to reproduce in an other one, has three main causes. First, population variability, as caused by random population extinctions, induces high incentives to disperse through the probability to recolonize an empty population and thus to escape competition for space. This adds to the second cause, kin competition avoidance where individuals in a crowded patch will benefit from the release of competition with relatives caused by dispersal. Dispersal may thus be viewed as an altruistic act. Third, dispersal might evolve as a strategy of avoiding inbred matings which are expected to bear fitness costs due to the presence of a mutation load. The interaction of inbreeding avoidance and kin competition is explored in chapter 2. Conditions conducive to the establishment of a high relatedness within population are expected to induce high dispersal through both kin competition avoidance and inbreeding avoidance. However, the dynamics of inbreeding depression is bound to depend on the level of gene flow as well as on the deleterious mutation parameters. Mutations more prone to settle a high level of inbreeding depression will select for increased dispersal. Chapter 3 investigates the effect of the mating system on the joint dynamics of dispersal and inbreeding depression. Higher inbreeding rates as those found in various mating systems lead to a more efficient purge of the deleterious mutations. However, this decrease in the costs of inbreeding are usually accompanied by a higher within deme relatedness which balances the decreased effect of inbreeding avoidance on the evolution of dispersal. Finally, population turnover, as found in most natural populations has a dual effect on dispersal. Indeed, it increases dispersal by the increased probability of winning a breeding slot in extinct demes it creates but, on the other hand, it counter-selects for dispersal through the slow establishment of unsaturated demic conditions which contribute to lower the local competition for space. Résumé Ce travail se propose d'étudier les effets conjoints des multiples causes de l'évolution de la dispersion en métapopulation. La dispersion, définie ici comme étant la capacité de quitter sa population d'origine pour se reproduire dans une antre population, possède trois principales causes. Premièrement, l'extinction aléatoire de populations sélectionne pour plus de dispersion car elle augmente la Probabilité de recoloniser un patch éteint et donc d'échapper à la compétition locale. La seconde cause, l'évitement de la compétition de parentèle, sélectionne pour plus de dispersion par les bénéfices qu'elle apporte par diminution de la compétition entre individus apparentés. Troisièmement, la dispersion évolue "comme stratégie d'évitement de la dépression de consanguinité présente dans des petites populations isolées. L'interaction entre l'évitement de la consanguinité et de la compétition de parentèle est étudiée dans le chapitre 2. Les conditions conduisant à l'établissement d'un fort apparentement à l'intérieur des populations sont celles qui génèrent le plus de sélection pour la dispersion. Cependant, la dynamique de la dépression de consanguinité est dépendante de la dispersion entre populations ainsi que des paramètres des mutations délétères. Les mutations créant le plus de dépression de consanguinité sont celles qui sélectionneront le plus pour de la dispersion. Le chapitre 3 s'intéresse aux effets du système de reproduction sur la dynamique conjointe du fardeau de mutation et de la dispersion. La purge des mutations délétère étant plus sévère dans des conditions de forte consanguinité, elle diminue les coûts de la consanguinité mais est habituellement accompagné par une augmentation de l'apparentement et donc l'effet peut être neutre sur la dispersion. Finalement, le turnover de populations a un effet dual sur la dispersion. La dispersion est sélectionnée par l'augmentation de la probabilité de gagner une place de reproduction dans des patchs éteints mais elle est également contre sélectionnée par la désaturation des patchs causée par l'extinction et la diminution de la compétition pour l'espace qui intervient dans ce cas.