941 resultados para SINTERABLE CERAMIC POWDERS
Resumo:
Boehmite (gamma-AlOOH) synthesis have been investigated using a spray pyrolysis (SP) device starting from a stable sol of Al-tri-sec-butoxide peptized by nitric acid. Free spherical particles from 100 to 500 nm have been elaborated. Particles sub-structure is made of nano-crystalline boehmite with very small average crystallite size (one crystal cell along the b axis). The nano-crystalline boehmite synthesized by SP at low temperature (200 degrees C) is spontaneously dispersible in water without any surface treatment. Boehmite powder may be transformed to transition gamma-alumina by heat post-treatment. Powders of sub-micrometric and spherical gamma-alumina particles may also be synthesized by SP at 700 degrees C. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Cooperative energy transfer upconversion luminescence is investigated in Tb(3+)/Yb(3+)-codoped PbGeO(3)-PbF(2)-CdF(2) glass-ceramic and its precursor glass under resonant and off resonance infrared excitation. Bright UV-visible emission signals around 384, 415, 438 nm, and 473-490, 545, 587, and 623 nm are identified as due to the (5)D(3)((5)G(6))->(7)F(1) (J=6,5,4) and (5)D(4)->(7)F(1) (J=6,5,4,3) transitions, respectively, and readily observed. The results indicate that cooperative energy transfer between ytterbium and terbium. ions followed by excited state absorption are the dominant upconversion excitation mechanisms involved. Comparison of the upconversion process in a glass-ceramic sample and its glassy precursor revealed that the former present much higher upconversion efficiency. The dependence of the upconversion emission upon pump power, temperature, and doping content is also examined.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This work presents results concerning the preparation of redispersible tin oxide nanoparticles achieved by using Tiron molecule ((OH)(2)C(6)H(2) (SO(3)Na)(2)) as surface modifying agent. The adsorption isotherm measurements show that an amount of 10 wt.% of Tiron is need to recover the SnO(2) nanoparticles surface with a monolayer. These nanoparticles can be easily redispersed in tetramethyl ammonium hydroxide at pH greater than or equal to11 until a powder concentration of 12 vol.% of tin. Under these conditions, hydrodynamic particle size is about 7 nm and increases until 52 nm at pH 6 due to the aggregation phenomenon. The time evolution of the viscoelastic properties indicates that the suspensions at pH 12.5, containing 12 vol.% tin oxide and 10 wt.% of surface modifier are kinetically stable. After thermal treatment at different temperature the powder characterisation evidences that the presence of Tiron monolayer at the nanoparticles surface increases the thermal stability of the porous texture and prevent the micropore size growth. This set of results contributes to satisfy the demand for more controlled synthesis of nanoparticles with high thermal stability as required for fabrication of ultrafiltration ceramic membranes. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The study of the photoluminescent properties affected by order and disorder of the BaMoO4 powders is the principal objective in this work. BaMoO4 compounds were prepared using soft chemical process called Complex Polymerization Method. In this work, different deagglomeration types and different heating rates were used to promote different disorder degrees. Scheelite type phase (BaMoO4) was determined by X-ray Diffraction (XRD), Fourier Transformed Infra-Red (FTIR) and Raman spectroscopy after heat treating the sample at 400 degrees C. The room temperature luminescence spectra revealed an intense single-emission band in the visible region. Based on XRD and Raman data it was observed that the transition between the completely disordered structure to completely ordered structure is a good condition for photoluminescence (PL) emission. The best PL emission is obtained when the material possesses short range disorder, i.e., is periodically ordered (XRD), but some disorder as measured by Raman spectroscopy. The excellent optical properties observed for disordered BaMoO4 suggested that this material is a highly promising candidate for optical applications.
Resumo:
Energy transfer excited multiwavelength visible upconversion emission and white light generation is described in a single sample of PbGeO(3)-PbF(2)-CdF(2) glass-ceramic triply doped With Ho/Tm/Yb under single infrared laser excitation. Blue (475 nm), green (540 mn), and red (650 nm), upconversion luminescence signals are generated, and the emissions are assigned, respectively, to thulium ((1)G(4)-(3)H(6)), and holmium ((5)S(2);(5)F(4)) -> (5)I(8), (5)F(5) -> (5)I(8)) ions transitions, both excited via successive energy transfers from ytterbium ions. It is experimentally shown that with a proper combination of the rare earth ions contents, white light may be produced, with the simultaneous generation of fluorescence with controllable intensities at the wavelengths of the three primary colours in a single sample and using a single near-infrared excitation source.
Resumo:
Energy-transfer excited upconversion luminescence in Ho3+/Yb3+- and Tb3+/Yb3+ -codoped PbGeO3-PbF2-CdF2 glass and glass-ceramic under infrared excitation is investigated. In Ho3+/Yb3+-codoped samples, green (545 nm), red (652 nm), and near-infrared (754 nm) upconversion emission corresponding to the S-5(2) (F-5(4)) -> I-5(8), F-5(5) -> I-5(8), and S-5(2)(F-5(4)) -> I-5(7) transitions, respectively, was observed. Blue (490 nm) emission assigned to the F-5(2,3) -> I-5(8) transition was also detected. In the Tb3+/Yb3+-codoped system, bright UV-visible emission around 384, 415, 438, 473-490, 545, 587, and 623 nm, identified as due to the D-5(3)((5)G(6)) -> F-7(J)(J = 6, 5, 4) and D-5(4) -> F-7(J)(J = 6, 5, 4, 3) transitions, was measured. The comparison of the upconversion process in glass ceramic and its glassy precursor revealed that the former samples present much higher upconversion efficiencies. The dependence of the upconversion emission upon pump power, and doping contents was also examined. The results indicated that successive energy-transfer between ytterbium and holmium ions and cooperative energy-transfer between ytterbium and terbium ions followed by excited-state absorption are the dominant upconversion excitation mechanisms herein involved. The viability of using the samples for three-dimensional solid-state color displays is also discussed. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Intense and broad visible photoluminescent (PL) band was observed at room temperature in disordered Pb(Zr(0.53)Ti(0.47))O(3) powders. Structural order-disorder was evaluated by different methods. XANES results pointed to the presence of different coordination modes of disordered Ti powders, and in the ordered sample the local structure around titanium atoms is characteristic of the structurally ordered PZT with only TiO(6) units. Only samples containing simultaneous structural order and disorder in their network present the intense visible PL emission at room temperature.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
SrBi2(Ta0.5Nb0.48W0.02)(2)O-9 powders (SBTN-W) were prepared by the polymeric precursor method. The influence of annealing temperature on the phase formation and specific surface area was evaluated. TG/DTA associated with X-ray diffraction (XRD) analyses showed the formation of perovskite phase at around 500-600 degrees C. An orthorhombic structure with A21am space group was identified by Rietveld refinement. BET analysis revealed that the specific surface area reduces with increasing thermal annealing. SEM micrographies showed grains in an almost-spherical morphology with the presence of agglomerates. (C) 2006 Elsevier B.V. All rights reserved.
Resumo:
Dental ceramics are presented within a simplifying framework allowing for facile understanding of their development, composition and indications. Engineering assessments of clinical function are dealt with and literature is reviewed on the clinical behaviour of all-ceramic systems. Practical aspects are presented regarding the choice and use of dental ceramics to maximize aesthetics and durability, emphasizing what we know and how we know it.