860 resultados para SERUM ZINC
Resumo:
Pregnant rats were given control (46 mg iron/kg, 61 mg zinc/kg), low-Zn (6.9 mg Zn/kg) or low-Zn plus Fe (168 mg Fe/kg) diets from day 1 of pregnancy. The animals were allowed to give birth and parturition times recorded. Exactly 24 h after the end of parturition the pups were killed and analysed for water, fat, protein, Fe and Zn contents and the mothers' haemoglobin (Hb) and packed cell volume (PCV) were measured. There were no differences in weight gain or food intakes throughout pregnancy. Parturition times were similar (mean time 123 (SE 15) min) and there were no differences in the number of pups born. Protein, water and fat contents of the pups were similar but the low-Zn Fe-supplemented group had higher pup Fe than the low-Zn unsupplemented group, and the control group had higher pup Zn than both the low-Zn groups. The low-Zn groups had a greater incidence of haemorrhaged or deformed pups, or both, than the controls. Pregnant rats were given diets of adequate Zn level (40 mg/kg) but with varying Fe:Zn (0.8, 1.7, 2.9, 3.7). Zn retention from the diet was measured using 65Zn as an extrinsic label on days 3, 10 and 17 of pregnancy with a whole-body gamma-counter. A group of non-pregnant rats was also included as controls. The 65Zn content of mothers and pups was measured 24-48 h after birth and at 14, 21 and 24 d of age. In all groups Zn retention was highest from the first meal, fell in the second meal and then rose in the third meal of the pregnant but not the non-pregnant rats. There were no differences between the groups given diets of varying Fe:Zn level. Approximately 25% of the 65Zn was transferred from the mothers to the pups by the time they were 48 h old, and a further 17% during the first 14 d of lactation. The pup 65Zn content did not significantly increase after the first 20 d of lactation but the maternal 65Zn level continued to fall gradually.
Resumo:
1. Female Wistar rats were given an adequate-zinc (60 μg/g) or low-Zn (7 μg/g) diet for a minimum of 2 weeks and then mated. They were then either continued on the same diets (+Zn –Fe or –Zn –Fe) or given similar diets supplemented with four times the normal level of iron (+Zn + Fe or –Zn + Fe). The day before parturition they were killed and the fetuses removed and analysed. 2. There were no differences in numbers of fetuses or the number of resorption sites. In the absence of Fe supplementation, the mean fetal wet weight was significantly less (P < 0.05) in the low-Zn group but there was no effect of Zn in the two Fe-supplemented groups. The addition of Fe significantly decreased (P < 0.05) the mean fetal wet weight in the adequate-Zn groups but had no effect in the low-Zn groups. There were no differences in fetal dry weight, fat, protein or DNA content. Both Fe-supplemented groups produced fetuses of higher Fe concentration (P < 0.01), and mothers with higher bone Fe-concentration (P < 0.01) compared with the non-supplemented groups. The low-Zn groups produced fetuses of lower Zn concentration (P < 0,001) than the adequate-Zn groups but there was no effect on maternal bone Zn concentration. 3. It was concluded that Fe-supplements did not adversely affect fetal growth from mothers given a low-Zn diet, but the addition of Zn to the unsupplemented diet increased fetal wet weight. These findings were not accompanied by any other differences in fetal composition or dry weight, and do not therefore lend support to the suggestion of an Fe-Zn interaction.
Resumo:
Molecular and behavioural evidence points to an association between sex-steroid hormones and autism spectrum conditions (ASC) and/or autistic traits. Prenatal androgen levels are associated with autistic traits, and several genes involved in steroidogenesis are associated with autism, Asperger Syndrome and/or autistic traits. Furthermore, higher rates of androgen-related conditions (such as Polycystic Ovary Syndrome, hirsutism, acne and hormone-related cancers) are reported in women with autism spectrum conditions. A key question therefore is if serum levels of gonadal and adrenal sex-steroids (particularly testosterone, estradiol, dehydroepiandrosterone sulfate and androstenedione) are elevated in individuals with ASC. This was tested in a total sample of n=166 participants. The final eligible sample for hormone analysis comprised n=128 participants, n=58 of whom had a diagnosis of Asperger Syndrome or high functioning autism (33 males and 25 females) and n=70 of whom were age- and IQ-matched typical controls (39 males and 31 females). ASC diagnosis (without any interaction with sex) strongly predicted androstenedione levels (p<0.01), and serum androstenedione levels were significantly elevated in the ASC group (Mann-Whitney W=2677, p=0.002), a result confirmed by permutation testing in females (permutation-corrected p=0.02). This result is discussed in terms of androstenedione being the immediate precursor of, and being converted into, testosterone, dihydrotestosterone, or estrogens in hormone-sensitive tissues and organs.
Resumo:
Background: Adiponectin gene expression is modulated by peroxisome proliferator–activated receptor γ, which is a transcription factor activated by unsaturated fatty acids. Objective: We investigated the effect of the interaction between variants at the ADIPOQ gene locus, age, sex, body mass index (BMI), ethnicity, and the replacement of dietary saturated fatty acids (SFAs) with monounsaturated fatty acids (MUFAs) or carbohydrates on serum adiponectin concentrations. Design: The RISCK (Reading, Imperial, Surrey, Cambridge, and Kings) study is a parallel-design, randomized controlled trial. Serum adiponectin concentrations were measured after a 4-wk high-SFA (HS) diet and a 24-wk intervention with reference (HS), high-MUFA (HM), and low-fat (LF) diets. Single nucleotide polymorphisms at the ADIPOQ locus −11391 G/A (rs17300539), −10066 G/A (rs182052), −7734 A/C (rs16861209), and +276 G/T (rs1501299) were genotyped in 448 participants. Results: In white Europeans, +276 T was associated with higher serum adiponectin concentrations (n = 340; P = 0.006) and −10066 A was associated with lower serum adiponectin concentrations (n = 360; P = 0.03), after adjustment for age, BMI, and sex. After the HM diet, −10066 G/G subjects showed a 3.8% increase (95% CI: −0.1%, 7.7%) and G/A+A/A subjects a 2.6% decrease (95% CI: −5.6%, 0.4%) in serum adiponectin (P = 0.006 for difference after adjustment for the change in BMI, age, and sex). In −10066 G/G homozygotes, serum adiponectin increased with age after the HM diet and decreased after the LF diet. Conclusion: In white −10066 G/G homozygotes, an HM diet may help to increase adiponectin concentrations with advancing age. This trial was registered at clinicaltrials.gov as ISRCTN29111298.
Resumo:
The antioxidant properties of caffeic acid and bovine serum albumin in oil-in-water and water-in-oil emulsions were studied. Caffeic acid (5 mmol/kg emulsion) showed good antioxidant properties in both 30% sunflower oil-in-water (OW) and 20% water-in-sunflower oil emulsions (WO), pH 5.4, during storage at 50 ºC. Although bovine serum albumin (BSA) (0.2%) had a slight antioxidant effect, the combination of caffeic acid and BSA showed a synergistic reduction in the rate of development of rancidity, with significant reductions in concentration of total volatiles, peroxide value (PV) and p-anisidine value (PA) for both emulsion types. The synergistic increase in stability of the OW and WO emulsions containing BSA and caffeic acid was 102.9 and 50.4 % respectively based on TOTOX values, which are calculated as 2PV + PA, with greater synergy calculated if based on formation of headspace volatiles, The OW emulsion was more susceptible to the development of headspace volatiles by oxidation than the WO emulsion, even though the degree of oxidation assessed by the TOTOX value was similar.
Resumo:
Pharmacological levels of zinc oxide (ZnO) incorporated into the post-weaning piglet diet reduce the incidence of diarrhoea caused by enterotoxigenic Escherichia coli (ETEC) K88. The mechanism for this is not understood. Here, Intestinal Porcine Epithelial Cells (IPEC) J2 were used as an in vitro model of the porcine intestine. ZnO reduced IPEC J2 viability at concentrations >= 200 mu M, and ETEC adhesion to the host cell was unaffected by ZnO. Characterisation of the metabolism of IPEC J2 cells and ETEC established the effects of ZnO treatment on the metabolic profile of both. Although 100 mu M ZnO did not inhibit growth of either host or pathogen in fully supplemented media, metabolic profiles were significantly altered. Glucose and mannose were essential energy sources for IPEC J2 cells in the presence of ZnO, as the ability to utilise other sources was compromised. The increase in specificity of requirements to support respiration in ETEC was more pronounced, in particular the need for cysteine as a nitrogen source. These findings indicate that ZnO impacts on both host cell and pathogen metabolism and may provide insight into the mechanism for diarrhoea reduction. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The epoxide ring in 5,6-dihydro-5,6-epoxy-1,10-phenanthroline (L) opens up in its reaction with 4-methylaniline and 4-methoxyaniline in water in equimolar proportion at room temperature without any Lewis acid catalyst to give a monohydrate of 6-(4-methyl-phenylamino)-5,6-dihydro-1,10-phenanthrolin-5-ol (L′·H2O) and 6-(4-methoxyphenyl-amino)-5,6-dihydro-1,10-phenanthrolin-5-ol (L″) respectively. Reaction time decreases from 72 to 14 h in boiling water. But the yields become less. Reaction of L with Zn(ClO4)2·6H2O in methanol in 3:1 molar ratio at room temperature affords white [ZnL3](ClO4)2·H2O. The X-ray crystal structure of the acetonitrile solvate [ZnL3](ClO4)2·MeCN has been determined which shows that the metal has a distorted octahedral N6 coordination sphere. [ZnL3](ClO4)2·2H2O reacts with 4-methylaniline and 4-methoxyaniline in boiling water in 1:3 molar proportion in the absence of any Lewis acid catalyst to produce [ZnL′3](ClO4)2·4H2O and [ZnL″3](ClO4)2·H2O, respectively in 1–4 h time in somewhat low yield. In the 1H NMR spectra of [ZnL′3](ClO4)2·4H2O and [ZnL″3](ClO4)2·H2O, only one sharp methyl signal is observed implicating that only one diastereomer out of the 23 possibilities is formed. The same diastereomers are obtained when L′·H2O and L″ are reacted directly with Zn(ClO4)2·6H2O in tetrahydrofuran at room temperature in very good yields. Reactions of L′·H2O and L″ with Ru(phen)2Cl2·2H2O (phen = 1,10-phenanthroline) in equimolar proportion in methanol–water mixture under refluxing condition lead to the isolation of two diastereomers of [Ru(phen)2L′](ClO4)2·2H2O and [Ru(phen)2L″](ClO4)2·2H2O.
Resumo:
The affinity of anthocyanins for human serum albumin (HSA) was determined by a fluorescence quenching method. The effects of pH and structure of anthocyanins on the binding constants were studied. The constants for binding of anthocyanins to HSA ranged from 1.08 x 10^5 M-1 to 13.16 x 10^5 M-1. A hydrophobic effect at acidic pH was shown by the relatively high positive entropy values under the conditions studied. Electrostatic interactions including hydrogen bonding contributed to the binding at pH 7.4. The effect of structure of anthocyanins on the affinity was pH dependent, particularly the effect of additional hydroxyl substituents. Hydroxyl substituents and glycosylation of anthocyanins decreased the affinity for binding to HSA at lower pH (especially pH 4), but increased the strength of binding at pH 7.4. In contrast, methylation of a hydroxyl group enhanced the binding at acidic pH, while this substitution reduced the strength of binding at pH 7.4. This paper has shown that changes in anthocyanin structure or reductions in pH, which may occur in the region of inflammatory sites, have an effect of the binding of anthocyanins to HSA.
Resumo:
The low availability of zinc (Zn) in soils and crops affects dietary Zn intake worldwide. This study sought to determine if the natural genetic variation in shoot Zn concentrations (Zn(shoot)) is sufficient to pursue a crop improvement breeding strategy in a leafy vegetable crop. The gene-pool of Brassica oleracea L. was sampled using a large (n = 376) diversity foundation set (DFS), representing almost all species-wide common allelic variation, and 74 commercial varieties (mostly F(1)). The DFS genotypes were grown at low and high soil phosphorus (P) levels under glasshouse and field conditions, and also in a Zn-deficient soil, with or without Zn-fertilisation, in a glasshouse. Despite the large variation in Zn(shoot) among genotypes, environment had a profound effect on Zn(shoot) The heritability of Zn(shoot) was significant, but relatively low, among 90 doubled-haploid (DH) lines from a mapping population. While several quantitative trait loci (QTL) associated with Zn(shoot) occurred on chromosomes C2, C3, C5, C7, and C9, these were generally weak and conditional upon growth conditions. Breeding for Zn(shoot) in B. oleracea is therefore likely to be challenging. Shoot P concentrations increased substantially in all genotypes under low soil Zn conditions. Conversely, only some genotypes had increased Zn(shoot) at low soil P levels. Sufficient natural genetic variation may therefore exist to study some of the interactions between Zn and P nutrition.
Resumo:
Zinc (Zn) is an essential component of thousands of proteins in plants, although it is toxic in excess. In this review, the dominant fluxes of Zn in the soil-root-shoot continuum are described, including Zn inputs to soils, the plant availability of soluble Zn(2+) at the root surface, and plant uptake and accumulation of Zn. Knowledge of these fluxes can inform agronomic and genetic strategies to address the widespread problem of Zn-limited crop growth. Substantial within-species genetic variation in Zn composition is being used to alleviate human dietary Zn deficiencies through biofortification. Intriguingly, a meta-analysis of data from an extensive literature survey indicates that a small proportion of the genetic variation in shoot Zn concentration can be attributed to evolutionary processes whose effects manifest above the family level. Remarkable insights into the evolutionary potential of plants to respond to elevated soil Zn have recently been made through detailed anatomical, physiological, chemical, genetic and molecular characterizations of the brassicaceous Zn hyperaccumulators Thlaspi caerulescens and Arabidopsis halleri.
Resumo:
Zinc (Zn) and cadmium (Cd) hyperaccumulation may have evolved twice in the Brassicaceae, in Arabidopsis halleri and in the Noccaea genus. Tandem gene duplication and deregulated expression of the Zn transporter, HMA4, has previously been linked to Zn/Cd hyperaccumulation in A. halleri. Here, we tested the hypothesis that tandem duplication and deregulation of HMA4 expression also occurs in Noccaea. A Noccaea caerulescens genomic library was generated, containing 36,864 fosmid pCC1FOS (TM) clones with insert sizes similar to 20-40 kbp, and screened with a PCR-generated HMA4 genomic probe. Gene copy number within the genome was estimated through DNA fingerprinting and pooled fosmid pyrosequencing. Gene copy numbers within individual clones was determined by PCR analyses with novel locus specific primers. Entire fosmids were then sequenced individually and reads equivalent to 20-fold coverage were assembled to generate complete whole contigs. Four tandem HMA4 repeats were identified in a contiguous sequence of 101,480 bp based on sequence overlap identities. These were flanked by regions syntenous with up and downstream regions of AtHMA4 in Arabidopsis thaliana. Promoter-reporter beta-glucuronidase (GUS) fusion analysis of a NcHMA4 in A. thaliana revealed deregulated expression in roots and shoots, analogous to AhHMA4 promoters, but distinct from AtHMA4 expression which localised to the root vascular tissue. This remarkable consistency in tandem duplication and deregulated expression of metal transport genes between N. caerulescens and A. halleri, which last shared a common ancestor > 40 mya, provides intriguing evidence that parallel evolutionary pathways may underlie Zn/Cd hyperaccumulation in Brassicaceae.
Resumo:
Worldwide, many people are zinc (Zn)-deficient. Dietary Zn intake can be increased by producing crops with higher concentrations of Zn in their edible portions. This can be achieved by applying Zn-fertilisers to varieties with an increased ability to acquire Zn and to accumulate Zn in their edible portions. Potato (Solanum tuberosum L.) is an important food crop and is, therefore, a target for bio-fortification with Zn. Field trials incorporating a core collection of 23 potato genotypes, performed over 4 years (2006 – 2009), indicated significant genotypic effects on tuber Zn concentration and suggested that tuber Zn concentration was influenced by environmental effects, but also found that genotype environment (G E) interactions were not significant. Tuber Zn concentrations averaged 10.8 mg kg–1 dry matter (DM), and the ratio between the lowest and the highest varietal tuber Zn-concentration averaged 1.76. Tuber Zn concentrations could be increased by foliar Zn-fertilisation. Tuber yields of ‘Maris Piper’ were unaffected by foliar applications of < 1.08 g Zn plant–1. The relationship between tuber Zn concentration and foliar Zn application followed a saturation curve, reaching a maximum at approx. 30 mg Zn kg–1 DM at a foliar Zn application rate of 1.08 g plant–1. Despite a 40-fold increase in shoot Zn concentration compared to the unfertilised controls following foliar Zn fertilisation with 2.16 g Zn plant–1, only a doubling in tuber Zn concentration was observed. This suggests that the biofortification of tubers with Zn was restricted by the limited mobility of Zn in the phloem. A significant positive linear relationship between tuber Zn concentration and tuber N concentration supported the hypothesis of co-transport of Zn and N-compounds in the phloem.
Resumo:
Zinc (Zn)-deficient soils constrain rice (Oryza sativa) production and cause Zn malnutrition. The identification of Zn-deficiency-tolerant rice lines indicates that breeding might overcome these constraints. Here, we seek to identify processes underlying Zn-deficiency tolerance in rice at the physiological and transcriptional levels. A Zn-deficiency-tolerant line RIL46 acquires Zn more efficiently and produces more biomass than its nontolerant maternal line (IR74) at low Zn(ext) under field conditions. We tested if this was the result of increased expression of Zn(2+) transporters; increased root exudation of deoxymugineic acid (DMA) or low-molecular-weight organic acids (LMWOAs); and/or increased root production. Experiments were performed in field and controlled environment conditions. There was little genotypic variation in transcript abundance of Zn-responsive root Zn(2+)-transporters between the RIL46 and IR74. However, root exudation of DMA and LMWOA was greater in RIL46, coinciding with increased root expression of putative ligand-efflux genes. Adventitious root production was maintained in RIL46 at low Zn(ext), correlating with altered expression of root-specific auxin-responsive genes. Zinc-deficiency tolerance in RIL46 is most likely the result of maintenance of root growth, increased efflux of Zn ligands, and increased uptake of Zn-ligand complexes at low Zn(ext); these traits are potential breeding targets.
Resumo:
The increasing use of patterned neural networks in multielectrode arrays and similar devices drives the constant development and evaluation of new biomaterials. Recently, we presented a promising technique to guide neurons and glia reliably and effectively. Parylene-C, a common hydrophobic polymer, was photolithographically patterned on silicon oxide (SiO2) and subsequently activated via immersion in serum. In this article, we explore the effects of ultraviolet (UV)-induced oxidation on parylene's ability to pattern neurons and glia. We exposed parylene-C stripe patterns to increasing levels of UV radiation and found a dose-dependent reduction in the total mass of patterned cells, as well as a gradual loss of glial and neuronal conformity to the patterns. In contrast, nonirradiated patterns had superior patterning results and increased presence of cells. The reduced cell adhesion and patterning after the formation of aldehyde and carboxyl groups on UV-radiated parylene-C supports our hypothesis that cell adhesion and growth on parylene is facilitated by hydrophobic adsorption of serum proteins. We conclude that unlike other cell patterning schemes, our technique does not rely on photooxidation of the polymer. Nonetheless, the precise control of oxygenated groups on parylene could pave the way for the differential binding of proteins and other molecules on the surface, aiding in the adhesion of alternative cell types. © 2010 Wiley Periodicals, Inc. J Biomed Mater Res, 2010