973 resultados para SEQUENCE DIVERSITY
Resumo:
"The genetic diversity of Puumala hantavirus (PUUV) was studied in a local population of its natural host, the bank vole (Myodes glareolus). The trapping area (2.5x2.5 km) at Konnevesi, Central Finland, included 14 trapping sites, at least 500 m apart; altogether, 147 voles were captured during May and October 2005. Partial sequences of the S, M and L viral genome segments were recovered from 40 animals. Seven, 12 and 17 variants were detected for the S, M and L sequences, respectively; these represent new wild-type PUUV strains that belong to the Finnish genetic lineage. The genetic diversity of PUUV strains from Konnevesi was 0.2-4.9% for the S segment, 0.2-4.8% for the M segment and 0.2-9.7% for the L segment. Most nucleotide substitutions were synonymous and most deduced amino acid substitutions were conservative, probably due to strong stabilizing selection operating at the protein level. Based on both sequence markers and phylogenetic clustering, the S, M and L sequences could be assigned to two groups, 'A' and 'B'. Notably, not all bank voles carried S, M and L sequences belonging to the same group, i.e. SAMALA or SBMBLB.. A substantial proportion (8/40, 20%) of the newly characterized PUUV strains possessed reassortant genomes such as SBMALA, SAMBLB or SBMALB. These results suggest that at least some of the PUUV reassortants are viable and can survive in the presence of their parental strains."
Resumo:
This thesis studies the tree species’ juvenile diversity in cacao (Theobroma cacao L.) based agroforestry and in primary forest in a natural conservation forest environment of Lore Lindu National Park, Sulawesi, Indonesia. Species’ adult composition in Lore Lindu National Park is relatively well studied, less is known about tree species’ diversity in seedling communities particularly in frequently disturbed cacao agroforestry field environment. Cacao production forms a potentially serious thread for maintaining the conservation areas pristine and forested in Sulawesi. The impacts of cacao production on natural environment are directly linked to the diversity and abundance of shade tree usage. The study aims at comparing differences between cacao agroforestry and natural forest in the surrounding area in their species composition in seedling and sapling size categories. The study was carried out in two parts. Biodiversity inventory of seedlings and saplings was combined with social survey with farmer interviews. Aim of the survey was to gain knowledge of the cacao fields, and farmers’ observations and choices regarding tree species associated with cacao. Data was collected in summer 2008. The assessment of the impact of environmental factors of solar radiation, weeding frequency, cacao tree planting density, distance to forest and distance to main park road, and type of habitat on seedling and sapling compositions was done with Non-metric Multidimensional Scaling (NMS). Outlier analysis was used to assess distorting variables for NMS, and Multi-Response Permutation Procedures (MRPP) analysis to differentiate the impact of categorical variables. Sampling success was estimated with rarefaction curves and jackknife estimate of species richness. In the inventory 135 species of trees and shrubs were found. Only some agroforestry related species were dominating. The most species rich were sapling communities in forest habitat. NMS was showing generally low linear correlation between variation of species composition and environmental variables. Solar radiation was having most significance as explaining variable. The most clearly separated in ordination were cacao and forest habitats. The results of seedling and sapling inventory were only partly coinciding with farmers’ knowledge of the tree species occurring on their fields. More research with frequent assessment of seedling cohorts is needed due to natural variability of cohorts and high mortality rate of seedlings.
Resumo:
The notion of optimization is inherent in protein design. A long linear chain of twenty types of amino acid residues are known to fold to a 3-D conformation that minimizes the combined inter-residue energy interactions. There are two distinct protein design problems, viz. predicting the folded structure from a given sequence of amino acid monomers (folding problem) and determining a sequence for a given folded structure (inverse folding problem). These two problems have much similarity to engineering structural analysis and structural optimization problems respectively. In the folding problem, a protein chain with a given sequence folds to a conformation, called a native state, which has a unique global minimum energy value when compared to all other unfolded conformations. This involves a search in the conformation space. This is somewhat akin to the principle of minimum potential energy that determines the deformed static equilibrium configuration of an elastic structure of given topology, shape, and size that is subjected to certain boundary conditions. In the inverse-folding problem, one has to design a sequence with some objectives (having a specific feature of the folded structure, docking with another protein, etc.) and constraints (sequence being fixed in some portion, a particular composition of amino acid types, etc.) while obtaining a sequence that would fold to the desired conformation satisfying the criteria of folding. This requires a search in the sequence space. This is similar to structural optimization in the design-variable space wherein a certain feature of structural response is optimized subject to some constraints while satisfying the governing static or dynamic equilibrium equations. Based on this similarity, in this work we apply the topology optimization methods to protein design, discuss modeling issues and present some initial results.
Resumo:
This paper discusses various theoretical approaches to diversity management, analysing their similarities and differences. I start with a review of certain previously presented classifications, and then proceed to describing the different approaches in more detail. In this paper, I propose that the various viewpoints can be categorized into three groups: 1) practitioner/consultant approach, 2) mainstream approach, and 3) critical approaches. Although there are differences within these groups, in particular regarding the critical approaches, these differences appear less significant than those between the groups. Those representing the first group are mainly interested in how to get most out of a diverse workforce, while those in the second group focus on the effects of diversity on performance or work group functioning. While some of the mainstream writers can be rather critical towards earlier research, they hardly ever discuss or even recognize the wide ranging criticism put forward by critical scholars. The critical researchers, then, remain a rather scattered group who do not always share much more than a conviction that the mainstream research keeps missing highly significant issues. Nonetheless, in order to increase our understanding of how different persons can and do work together, more dialogue is required between the varying standpoints.
Resumo:
32P labelled 5S RNA isolated fromMycobacterium smegmatis was digested withT 1 and pancreatic ribonucleases separately and fingerprinted by two dimensional high voltage electrophoresis on thin-layer DEAE-cellulose plates. The radioactive spots were sequenced and their molar yields were determined. The chain length of the 5S RNA was found to be 120. It showed resemblances to both prokaryotic and eukaryotic 5S RNAs.
Resumo:
The role of spermine in inducing A-DNA conformation in deoxyoligonucleotides has been studied using CCGG and GGCC as model sequences. It has been found that while CCGG adopts an alternating B-DNA conformation in low salt solution at low temperature, addition of spermine to this medium induces a B --greater than A transition. In contrast, the A-DNA-like structure of GGCC in low salt solution at low temperature does not change under the influence of spermine. This suggests a sequence-dependent behaviour of spermine. Further these results suggest that the A-DNA conformation observed in the crystals of d(iCCGG) and d(GGCC)2 might have been due to the presence of spermine in the crystallization cocktail.
A Low ML-Decoding Complexity, High Coding Gain, Full-Rate, Full-Diversity STBC for 4 x 2 MIMO System
Resumo:
This paper proposes a full-rate, full-diversity space-time block code(STBC) with low maximum likelihood (ML) decoding complexity and high coding gain for the 4 transmit antenna, 2 receive antenna (4 x 2) multiple-input multiple-output (MIMO) system that employs 4/16-QAM. For such a system, the best code known is the DjABBA code and recently, Biglieri, Hong and Viterbo have proposed another STBC (BHV code) for 4-QAM which has lower ML-decoding complexity than the DjABBA code but does not have full-diversity like the DjABBA code. The code proposed in this paper has the same ML-decoding complexity as the BHV code for any square M-QAM but has full-diversity for 4- and 16-QAM. Compared with the DjABBA code, the proposed code has lower ML-decoding complexity for square M-QAM constellation, higher coding gain for 4- and 16-QAM, and hence a better codeword error rate (CER) performance. Simulation results confirming this are presented.
Resumo:
The sequence specific requirement for B----Z transition in solution was examined in d(CGTGCGCACG), d(CGTACGTACG), d(ACGTACGT) in presence of various Z-inducing factors. Conformational studies show that inspite of the alternating nature of purines and pyrimidines, the aforementioned sequences do not undergo B----Z transition under the influence of NaCl, hexamine cobalt chloride and ethanol. A comparison with the crystal structures of an assorted array of purine and pyrimidine sequences show that the sequence requirement for B----Z transition is much more stringent in solution as compared to the solid state. The disruptive influence of AT base pairs in B to Z transition is discussed.
Resumo:
Agri-environmental schemes have so far resulted in only minor positive implications for the biodiversity of agricultural environments, in contrast to what has been expected. Land-use intensification has decreased landscape heterogeneity and the amount of semi-natural habitats. Field margins are uncultivated areas of permanent vegetation located adjacent to fields. Since the number of these habitats is high, investing in their quality may result in more diverse agricultural landscapes. Field margins can be considered as multifunctional habitats providing agronomic, environmental and wildlife services. This thesis aimed at examining the plant communities of different types of field margin habitats and the factors affecting their species diversity and composition. The importance of edaphic, spatial and management factors was studied on regional, landscape and habitat scales. Vegetation surveys were conducted on regional and landscape scales and a field experiment on cutting management was conducted on a habitat scale. In field margin plant communities, species appeared to be indicators of high or intermediate soil fertility and moist soil conditions. The plant species diversity found was rather low, compared with most species-rich agricultural habitats in Finland, such as dry meadows. Among regions, land-use history, main production line, natural species and human induced distribution, climate and edaphic factors were elements inducing differences in species composition. The lowest regional species diversity of field margins was related to intensive and long-term cereal production. Management by cutting and removal or grazing had a positive effect on plant species diversity. The positive effect of cutting and removal on species richness was also dependent on the adjacent source of colonizing species. Therefore, in species-poor habitats and landscapes, establishment of margins with diverse seed mixtures can be recommended for enhancing the development of species richness. However, seed mixtures should include only native species preferably local origin. Management by cutting once a year for 5 years did not result in a decline in dominance of a harmful weed species, Elymus repens, showing that E. repens probably needs cutting more frequently than once per year. Agri-environmental schemes should include long-term contracts with farmers for the establishment, and management by cutting and removal or grazing, of field margins that are several metres wide. In such schemes, the timing and frequency of management should be planned so as not to harm other taxa, such as the insects and birds that are dependent on these habitats. All accidental herbicide drifts to field margins should be avoided when spraying the cultivated area to minimize the negative effects of sprayings on vegetation. The harmful effects of herbicides can be avoided by organic farming methods.
Resumo:
Background: Protein phosphorylation is a generic way to regulate signal transduction pathways in all kingdoms of life. In many organisms, it is achieved by the large family of Ser/Thr/Tyr protein kinases which are traditionally classified into groups and subfamilies on the basis of the amino acid sequence of their catalytic domains. Many protein kinases are multidomain in nature but the diversity of the accessory domains and their organization are usually not taken into account while classifying kinases into groups or subfamilies. Methodology: Here, we present an approach which considers amino acid sequences of complete gene products, in order to suggest refinements in sets of pre-classified sequences. The strategy is based on alignment-free similarity scores and iterative Area Under the Curve (AUC) computation. Similarity scores are computed by detecting common patterns between two sequences and scoring them using a substitution matrix, with a consistent normalization scheme. This allows us to handle full-length sequences, and implicitly takes into account domain diversity and domain shuffling. We quantitatively validate our approach on a subset of 212 human protein kinases. We then employ it on the complete repertoire of human protein kinases and suggest few qualitative refinements in the subfamily assignment stored in the KinG database, which is based on catalytic domains only. Based on our new measure, we delineate 37 cases of potential hybrid kinases: sequences for which classical classification based entirely on catalytic domains is inconsistent with the full-length similarity scores computed here, which implicitly consider multi-domain nature and regions outside the catalytic kinase domain. We also provide some examples of hybrid kinases of the protozoan parasite Entamoeba histolytica. Conclusions: The implicit consideration of multi-domain architectures is a valuable inclusion to complement other classification schemes. The proposed algorithm may also be employed to classify other families of enzymes with multidomain architecture.