980 resultados para SEMICONDUCTOR JUNCTION LASERS
Resumo:
We report the first experimental measurements on the spectral modification of type IA fibre Bragg gratings, incorporated in an optical network, which result from the use of high-power, near-infrared lasers. The fibre grating properties are modified in a controlled manner by exploiting the characteristics of the inherent 1400 nm absorption band of the optical fibre, which grows in strength during the type IA grating inscription. If the fibre network is illuminated with a high-power laser, having an emission wavelength coincident with the absorption band, the type IA centre wavelength and chirp can be modified. Furthermore, partial grating erasure is demonstrated. This has serious implications when using type IA gratings in an optical network, as their spectrum can be modified using purely optical methods (no external heating source acts on the fibre), and to their long-term stability as the grating is shown to decay. Conversely, suitably stabilized gratings can be spectrally tailored, for tuning fibre lasers or edge filter modification in sensing applications, by purely optical means. © 2006 IOP Publishing Ltd.
Resumo:
We have fabricated a neodymium-doped phosphate glass fiber with a silica cladding and used it to form a fiber laser. Phosphate and silicate glasses have considerably different glass transition temperatures and softening points making it hard to draw a fiber from these two glasses. A bulk phosphate glass of composition (Nd2O3)(0.011)(La2O3)(0.259)(P2O5)(0.725)(Al2O3)(0.005) was prepared and the resultant material was transparent, free from bubbles and visibly homogeneous. The bulk phosphate glass was drawn to a fiber while being jacketed with silica and the resultant structure was of good optical quality, free from air bubbles and major defects. The attenuation at a wavelength of 1.06 mu m was 0.05 dB/cm and the refractive index of the core and cladding at the pump wavelength of 488 nm was 1.56 and 1.46, respectively. The fibers were mechanically strong enough to allow for ease of handling and could be spliced to conventional silica fiber. The fibers were used to demonstrate lasing at the F-4(3/2) - I-4(11/2) (1.06 mu m) transition. Our work demonstrates the potential to form silica clad optical fibers with phosphate cores doped with very high levels of rare-earth ions (27-mol % rare-earth oxide).
Resumo:
We review our recent progress on the study of new nonlinear mechanisms of pulse shaping in passively mode-locked fiber lasers. These include a mode-locking regime featuring pulses with a triangular distribution of the intensity, and spectral compression arising from nonlinear pulse propagation. We also report on our recent experimental studies unveiling new types of vector solitons with processing states of polarization for multi-pulse and tightly bound-state soliton (soliton molecule) operations in a carbon nanotube (CNT) mode-locked fiber laser with anomalous dispersion cavity. © 2014 World Scientific Publishing Company.
Resumo:
In this letter, we demonstrate an optically pumped semiconductor disk laser frequency doubled with a periodically poled lithium tantalate crystal. Crystals with various lengths were tested for intracavity frequency conversion. The semiconductor disk laser exploited GaInNAs-based active region with GaAsAlAs distributed Bragg mirror to produce emission at 1.2- μm wavelength. The frequency doubled power up to 760 mW at the wavelength of 610 nm was achieved with a 2-mm-long crystal. © 2010 IEEE.
Resumo:
In this paper, we investigate SHG efficiency dependency on crystal length. Four periodically-poled MgSLT crystals (PPMgSLT) of 2, 4, 11 and 25 mm in length were used, for intracavity frequency doubling of an optically-pumped GalnNAs semiconductor disk laser.
Resumo:
The THz optoelectronics field is now maturing and semiconductor-based THz antenna devices are becoming more widely implemented as analytical tools in spectroscopy and imaging. Photoconductive (PC) THz switches/antennas are driven optically typically using either an ultrashort-pulse laser or an optical signal composed of two simultaneous longitudinal wavelengths which are beat together in the PC material at a THz difference frequency. This allows the generation of (photo)carrier pairs which are then captured over ultrashort timescales usually by defects and trapping sites throughout the active material lattice. Defect-implanted PC materials with relatively high bandgap energy are typically used and many parameters such as carrier mobility and PC gain are greatly compromised. This paper demonstrates the implementation of low bandgap energy InAs quantum dots (QDs) embedded in standard crystalline GaAs as both the PC medium and the ultrafast capture mechanism in a PC THz antenna. This semiconductor structure is grown using standard MBE methods and allows the device to be optically driven efficiently at wavelengths up to ~1.3 µm, in this case by a single tunable dual-mode QD diode laser.
Resumo:
A record broadly tunable high-power external cavity InAs/GaAs quantum-dot diode laser with a tuning range of 202 nm (1122 nm-1324 nm) is demonstrated. A maximum output power of 480 mW and a side-mode suppression ratio greater than 45 dB are achieved in the central part of the tuning range. We exploit a number of strategies for enhancing the tuning range of external cavity quantum-dot lasers. Different waveguide designs, laser configurations and operation conditions (pump current and temperature) are investigated for optimization of output power and tunability. (C) 2010 Optical Society of America
Resumo:
The concept of random lasers exploiting multiple scattering of photons in an amplifying disordered medium in order to generate coherent light without a traditional laser resonator has attracted a great deal of attention in recent years. This research area lies at the interface of the fundamental theory of disordered systems and laser science. The idea was originally proposed in the context of astrophysics in the 1960s by V.S. Letokhov, who studied scattering with "negative absorption" of the interstellar molecular clouds. Research on random lasers has since developed into a mature experimental and theoretical field. A simple design of such lasers would be promising for potential applications. However, in traditional random lasers the properties of the output radiation are typically characterized by complex features in the spatial, spectral and time domains, making them less attractive than standard laser systems in terms of practical applications. Recently, an interesting and novel type of one-dimensional random laser that operates in a conventional telecommunication fibre without any pre-designed resonator mirrors-random distributed feedback fibre laser-was demonstrated. The positive feedback required for laser generation in random fibre lasers is provided by the Rayleigh scattering from the inhomogeneities of the refractive index that are naturally present in silica glass. In the proposed laser concept, the randomly backscattered light is amplified through the Raman effect, providing distributed gain over distances up to 100km. Although an effective reflection due to the Rayleigh scattering is extremely small (~0.1%), the lasing threshold may be exceeded when a sufficiently large distributed Raman gain is provided. Such a random distributed feedback fibre laser has a number of interesting and attractive features. The fibre waveguide geometry provides transverse confinement, and effectively one-dimensional random distributed feedback leads to the generation of a stationary near-Gaussian beam with a narrow spectrum. A random distributed feedback fibre laser has efficiency and performance that are comparable to and even exceed those of similar conventional fibre lasers. The key features of the generated radiation of random distributed feedback fibre lasers include: a stationary narrow-band continuous modeless spectrum that is free of mode competition, nonlinear power broadening, and an output beam with a Gaussian profile in the fundamental transverse mode (generated both in single mode and multi-mode fibres).This review presents the current status of research in the field of random fibre lasers and shows their potential and perspectives. We start with an introductory overview of conventional distributed feedback lasers and traditional random lasers to set the stage for discussion of random fibre lasers. We then present a theoretical analysis and experimental studies of various random fibre laser configurations, including widely tunable, multi-wavelength, narrow-band generation, and random fibre lasers operating in different spectral bands in the 1-1.6μm range. Then we discuss existing and future applications of random fibre lasers, including telecommunication and distributed long reach sensor systems. A theoretical description of random lasers is very challenging and is strongly linked with the theory of disordered systems and kinetic theory. We outline two key models governing the generation of random fibre lasers: the average power balance model and the nonlinear Schrödinger equation based model. Recently invented random distributed feedback fibre lasers represent a new and exciting field of research that brings together such diverse areas of science as laser physics, the theory of disordered systems, fibre optics and nonlinear science. Stable random generation in optical fibre opens up new possibilities for research on wave transport and localization in disordered media. We hope that this review will provide background information for research in various fields and will stimulate cross-disciplinary collaborations on random fibre lasers. © 2014 Elsevier B.V.
Resumo:
We highlight two important aspects related to a mathematical modeling of pulsed fiber lasers with long and ultra-long ring cavity -impact of an initial noise and a cavity length on generation of single optical pulses. Using as an example a simple scalar model of a ring fiber laser that describes the radiation build-up from noise and the following intra-cavity pulse dynamics during a round trip we study dependence of generated pulse characteristics on the resonator length in the range from 30 m up to 2 km. © 2013 Optical Society of America.
Resumo:
We study experimentally the dynamics of quantum-dot (QD) passively mode-locked semiconductor lasers under external optical injection. The lasers demonstrated multiple dynamical states, with bifurcation boundaries that depended upon the sign of detuning variation. The area of the hysteresis loops grew monotonically at small powers of optical injection and saturated at moderate powers. At high injection levels the hysteresis decreased and eventually disappeared.
Resumo:
We numerically show the possibility of pulse shaping in a passively mode-locked fiber laser by inclusion of a spectral filter into the laser cavity. Depending on the amplitude transfer function of the filter, we are able to achieve various regimes of advanced temporal waveform generation, including ones featuring bright and dark parabolic-, flat-top-, triangular- and saw-tooth-profiled pulses. The results demonstrate the strong potential of an in-cavity spectral pulse shaper for controlling the dynamics of mode-locked fiber lasers. © 2014 Optical Society of America.
Resumo:
A compact all-room-temperature CW 73-nm tunable laser source in the visible spectral region (574nm-647nm) has been demonstrated by frequency-doubling of a broadly-tunable InAs/GaAs quantum dot external-cavity diode laser in periodically-poled potassium titanyl phosphate waveguides with a maximum output power in excess of 12mW and a maximum conversion efficiency exceeding 10%. Three waveguides with different cross-sectional areas (4×4μm2, 3×5μm2 and 2x6μm2) were investigated. Introduction - Development of compact broadly tunable laser sources in the visible spectral region is currently very attractive area of research with applications ranging from photomedicine and biophotonics to confocal fluorescence microscopy and laser projection displays. In this respect, semiconductor lasers with their small size, high efficiency, reliability and low cost are very promising for realization of such sources by frequencydoubling of the infrared light in nonlinear crystal waveguides. Furthermore, the wide tunability offered by quantum-dot (QD) external-cavity diode lasers (ECDL), due to the temperature insensibility and broad gain bandwidth [1,2], is very promising for the development of tunable visible laser sources [3,4]. In this work we show a compact green-to-red tunable allroom-temperature CW laser source using a frequency-doubled InAs/GaAs QD-ECDL in periodically-poled potassium titanyl phosphate (PPKTP) crystal waveguides. This laser source generates frequency-doubled light over the 574nm-647nm wavelength range utilizing the significant difference in the effective refractive indices of high-order and low-order modes in multimode waveguides [3]. Experimental results - Experimental setup used in this work was similar to that described in [3] and consisted of a QD gain chip in the quasiLittrow configuration and a PPKTP waveguide. Coarse wavelength tuning of the QD-ECDL between 1140 nm and 1300 nm at 20°C was possible for pump current of 1.5 A. The laser output was coupled into the PPKTP waveguide using an AR-coated 40x aspheric lens (NA ~ 0.55). The PPKTP frequency-doubling crystal (not AR coated) used in our work was 18 mm in length and was periodically poled for SHG (with the poling period of ~ 11.574 11m). The crystal contained 3 different waveguides with cross-sectional areas of ~ 4x4 11m2, 3x5 11m2 and 2x6 11m2. Both the pump laser and the PPKTP crystal were operating at room temperature. The waveguides with cross-sectional areas of 4x411m2, 3x511m2 and 2x611m2 demonstrated the tunability in the wavelength ranges of 577nm - 647nm, 576nm -643nm and 574nm - 641nm, respectively, with a maximum output power of 12.04mW at 606 nm Conclusion - We demonstrated a compact all-room-temperature broadlytunable laser source operating in the visible spectral region between 574nm and 647nm. This laser source is based on second harmonic generation in PPKTP waveguides with different cross-sectional areas using an InAs/GaAs QD-ECDL References [I] E.U. Rafailov, M.A. Cataluna, and W. Sibbett, Nat. Phot. 1,395 (2007). [2] K.A. Fedorova, M.A. Cataluna, I. Krestnikov, D. Livshits, and E.U. Rafailov, Opt. Express 18(18), 19438-19443 (2010). [3] K.A. Fedorova, G.S. Sokolovskii, P.R. Battle, D.A. Livshits, and E.U. Rafailov, Laser Phys. Lett. 9, 790-795 (2012). [4] K.A. Fedorova,G.S. Sokolovskii, D.T. Nikitichev, P.R. Battle, I.L. Krestnikov, D.A. Livshits, and E.U. Rafailov, Opt. Lett. 38(15), 2835-2837 (2013) © 2014 IEEE.
Resumo:
A synchronization scheme for a two-channel phase sensitive amplifier is implemented based on the injection-locking of single InP quantum-dash mode-locked laser. Error free performance with penalty <1 dB is demonstrated for both channels. © 2011 Optical Society of America.
Resumo:
Characteristics of fiber Bragg grating based Fabry-Perot (FBG-FP) structures under transversal loading are investigated. A novel switchable multi-wavelength fiber laser employing loaded FBG-FP is also demonstrated. © 2012 OSA.
Resumo:
A novel time-division-multiplexed Bragg grating interrogation system is presented, utilising a semiconductor optical amplifier within a resonating cavity. Without fast electronics, closely spaced low reflectivity gratings are interrogated with high signal power and low noise.