930 resultados para Russian wheat aphid, population genetics, native range, invasive pathways, genetic isolation, demography, salivary gland genes, selection


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Saliva is a crucial biofluid for oral health and is also of increasing importance as a non-invasive source of disease biomarkers. Salivary alpha-amylase is an abundant protein in saliva, and changes in amylase expression have been previously associated with a variety of diseases and conditions. Salivary alpha-amylase is subject to a high diversity of post-translational modifications, including physiological proteolysis in the oral cavity. Here we developed methodology for rapid sample preparation and non-targeted LC-ESI-MS/MS analysis of saliva from healthy subjects and observed an extreme diversity of alpha-amylase proteolytic isoforms. Our results emphasize the importance of consideration of post-translational events such as proteolysis in proteomic studies, biomarker discovery and validation, particularly in saliva. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Population genetic studies of freshwater invertebrate taxa in New Zealand and South America are currently few despite the geologically and climatically dynamic histories of these regions. The focus of our study was a comparison of the influence on realized dispersal of 2 closely related nonbiting midges (Chironomidae) of population fragmentation on these separated austral land masses. We used a 734-base pair (bp) fragment of cytochrome c oxidase subunit I (COI) to investigate intraspecific genetic structure in Naonella forsythi Boothroyd in New Zealand and Ferringtonia patagonica Edwards in Patagonia. We proposed hypotheses about their potential dispersal and, hence, expected patterns of genetic structure in these 2 species based on published patterns for the closely related Australian taxon Echinocladius martini Cranston. Genetic structure revealed for both N. forsythi and F. patagonica was characterized by several highly divergent (2.0–10.5%) lineages of late Miocene–Pliocene age within each taxon that were not geographically localized. Many were distributed widely. This pattern differed greatly from population structure in E. martini, which was typified by much greater endemicity of divergent genetic lineages. Nevertheless, diversification of lineages in all 3 taxa appeared to be temporally congruent with the onset of late Miocene glaciations in the southern hemisphere that may have driven fragmentation of suitable habitat, promoting isolation of populations and divergence in allopatry. We argue that differences in realized dispersal post-isolation may be the result of differing availability of suitable habitat in interglacial periods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In parts of the Indo-Pacific, large-scale exploitation of the green turtle Chelonia mydas continues to pose a serious threat to the persistence of this species; yet very few studies have assessed the pattern and extent of the impact of such harvests. We used demographic and genetic data in an age-based model to investigate the viability of an exploited green turtle stock from Aru, south-east Indonesia. We found that populations are decreasing under current exploitation pressures. The effects of increasingly severe exploitation activities at foraging and nesting habitat varied depending on the migratory patterns of the stock. Our model predicted a rapid decline of the Aru stock in Indonesia under local exploitation pressure and a shift in the genetic composition of the stock. We used the model to investigate the influence of different types of conservation actions on the persistence of the Aru stock. The results show that local management actions such as nest protection and reducing harvests of adult nesting and foraging turtles can have considerable conservation outcomes and result in the long-term persistence of genetically distinct management units. © 2010 The Authors. Animal Conservation © 2010 The Zoological Society of London.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The field of epigenetics looks at changes in the chromosomal structure that affect gene expression without altering DNA sequence. A large-scale modelling project to better understand these mechanisms is gaining momentum. Early advances in genetics led to the all-genetic paradigm: phenotype (an organism's characteristics/behaviour) is determined by genotype (its genetic make-up). This was later amended and expressed by the well-known formula P = G + E, encompassing the notion that the visible characteristics of a living organism (the phenotype, P) is a combination of hereditary genetic factors (the genotype, G) and environmental factors (E). However, this method fails to explain why in diseases such as schizophrenia we still observe differences between identical twins. Furthermore, the identification of environmental factors (such as smoking and air quality for lung cancer) is relatively rare. The formula also fails to explain cell differentiation from a single fertilized cell. In the wake of early work by Waddington, more recent results have emphasized that the expression of the genotype can be altered without any change in the DNA sequence. This phenomenon has been tagged as epigenetics. To form the chromosome, DNA strands roll over nucleosomes, which are a cluster of nine proteins (histones), as detailed in Figure 1. Epigenetic mechanisms involve inherited alterations in these two structures, eg through attachment of a functional group to the amino acids (methyl, acetyl and phosphate). These 'stable alterations' arise during development and cell proliferation and persist through cell division. While information within the genetic material is not changed, instructions for its assembly and interpretation may be. Modelling this new paradigm, P = G + E + EpiG, is the object of our study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis provides new knowledge on an understudied group of grasses, some of which are resurrection grasses (i.e. able to withstand extreme drought). The sole Australian species (Tripogon loliiformis) is morphologically diverse and could be more than one species. This study sought to determine how many species of Tripogon occur in Australia, their relationships to other species in the genus and to two other genera of resurrection grasses (Eragrostiella and Oropetium). Results of the research indicate there is not enough evidence, from DNA sequence data, to warrant splitting up T. loliiformis into multiple species. The extensive morphological diversity seems to be influenced by environmental conditions. The three genera are so closely related that they could be grouped into a single genus. This new knowledge opens up pathways for future investigations, including studying genes responsible for desiccation tolerance and the conservation of native grasses that occur in rocky habitats.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In his book, The Emperor of All Maladies, Siddhartha Mukherjee writes a history of cancer — "It is a chronicle of an ancient disease — once a clandestine, 'whispered-about' illness — that has metamorphosed into a lethal shape-shifting entity imbued with such penetrating metaphorical, medical, scientific, and political potency that cancer is often described as the defining plague of our generation." Increasingly, an important theme in the history of cancer is the role of law, particularly in the field of intellectual property law. It is striking that a number of contemporary policy debates over intellectual property and public health have concerned cancer research, diagnosis, and treatment. In the area of access to essential medicines, there has been much debate over Novartis’ patent application in respect of Glivec, a treatment for leukaemia. India’s Supreme Court held that the Swiss company’s patent application violated a safeguard provision in India’s patent law designed to stop evergreening. In the field of tobacco control, the Australian Government introduced plain packaging for tobacco products in order to address the health burdens associated with the tobacco epidemic. This regime was successfully defended in the High Court of Australia. In the area of intellectual property and biotechnology, there have been significant disputes over the Utah biotechnology company Myriad Genetics and its patents in respect of genetic testing for BRCA1 and BRCA2, which are related to breast cancer and ovarian cancer. The Federal Court of Australia handed down a decision on the validity of Myriad Genetics’ patent in respect of genetic testing for BRCA1 in February 2013. The Supreme Court of the United States heard a challenge to the validity of Myriad Genetics’ patents in this area in April 2013, and handed down a judgment in July 2013. Such disputes have involved tensions between intellectual property rights, and public health. This article focuses upon one of these important test cases involving intellectual property, public health, and cancer research. In June 2010, Cancer Voices Australia and Yvonne D’Arcy brought an action in the Federal Court of Australia against the validity of a BRCA1 patent — held by Myriad Genetics Inc, the Centre de Recherche du Chul, the Cancer Institute of Japan and Genetic Technologies Limited. Yvonne D’Arcy — a Brisbane woman who has had treatment for breast cancer — maintained: "I believe that what they are doing is morally and ethically corrupt and that big companies should not control any parts of the human body." She observed: "For my daughter, I've had her have [sic] mammograms, etc, because of me but I would still like her to be able to have the test to see if the mutation gene is in there from me." The applicants made the following arguments: "Genes and the information represented by human gene sequences are products of nature universally present in each individual, and the information content of a human gene sequence is fixed. Genetic variations or mutations are products of nature. The isolation of the BRCA1 gene mutation from the human body constitutes no more than a medical or scientific discovery of a naturally occurring phenomenon and does not give rise to a patentable invention." The applicants also argued that "the alleged invention is not a patentable invention in that, so far as claimed in claims 1–3, it is not a manner of manufacture within the meaning of s 6 of the Statute of Monopolies". The applicants suggested that "the alleged invention is a mere discovery". Moreover, the applicants contended that "the alleged invention of each of claims 1-3 is not a patentable invention because they are claims for biological processes for the generation of human beings". The applicants, though, later dropped the argument that the patent claims related to biological processes for the generation of human beings. In February 2013, Nicholas J of the Federal Court of Australia considered the case brought by Cancer Voices Australia and Yvonne D’Arcy against Myriad Genetics. The judge presented the issues in the case, as follows: "The issue that arises in this case is of considerable importance. It relates to the patentability of genes, or gene sequences, and the practice of 'gene patenting'. Briefly stated, the issue to be decided is whether under the Patents Act 1990 (Cth) a valid patent may be granted for a claim that covers naturally occurring nucleic acid — either deoxyribonucleic acid (DNA) or ribonucleic acid (RNA) — that has been 'isolated'". In this context, the word "isolated" implies that naturally occurring nucleic acid found in the cells of the human body, whether it be DNA or RNA, has been removed from the cellular environment in which it naturally exists and separated from other cellular components also found there. The genes found in the human body are made of nucleic acid. The particular gene with which the patent in suit is concerned (BRCA1) is a human breast and ovarian cancer disposing gene. Various mutations that may be present in this gene have been linked to various forms of cancer including breast cancer and ovarian cancer.' The judge held in this particular case that Myriad Genetics’ patent claims were a "manner of manufacture" under s 6 of the Statute of Monopolies and s 18(1)(a) of the Patents Act 1990 (Cth). The matter is currently under appeal in the Full Court of the Federal Court of Australia. This article interprets the dispute over Myriad Genetics in light of the scholarly work of Nobel Laureate Professor Joseph Stiglitz on inequality. Such work has significant explanatory power in the context of intellectual property and biotechnology. First, Stiglitz has contended that "societal inequality was a result not just of the laws of economics, but also of how we shape the economy — through politics, including through almost every aspect of our legal system". Stiglitz is concerned that "our intellectual property regime … contributes needlessly to the gravest form of inequality." He maintains: "The right to life should not be contingent on the ability to pay." Second, Stiglitz worries that "some of the most iniquitous aspects of inequality creation within our economic system are a result of 'rent-seeking': profits, and inequality, generated by manipulating social or political conditions to get a larger share of the economic pie, rather than increasing the size of that pie". He observes that "the most iniquitous aspect of this wealth appropriation arises when the wealth that goes to the top comes at the expense of the bottom." Third, Stiglitz comments: "When the legal regime governing intellectual property rights is designed poorly, it facilitates rent-seeking" and "the result is that there is actually less innovation and more inequality." He is concerned that intellectual property regimes "create monopoly rents that impede access to health both create inequality and hamper growth more generally." Finally, Stiglitz has recommended: "Government-financed research, foundations, and the prize system … are alternatives, with major advantages, and without the inequality-increasing disadvantages of the current intellectual property rights system.’" This article provides a critical analysis of the Australian litigation and debate surrounding Myriad Genetics’ patents in respect of genetic testing for BRCA1. First, it considers the ruling of Nicholas J in the Federal Court of Australia that Myriad Genetics’ patent was a manner of manufacture as it related to an artificially created state of affairs, and not mere products of nature. Second, it examines the policy debate over gene patents in Australia, and its relevance to the litigation involving Myriad Genetics. Third, it examines comparative law, and contrasts the ruling by Nicholas J in the Federal Court of Australia with developments in the United States, Canada, and the European Union. Fourth, this piece considers the reaction to the decision of Nicholas at first instance in Australia. Fifth, the article assesses the prospects of an appeal to the Full Federal Court of Australia over the Myriad Genetics’ patents. Finally, this article observes that, whatever happens in respect of litigation against Myriad Genetics, there remains controversy over Genetic Technologies Limited. The Melbourne firm has been aggressively licensing and enforcing its related patents on non-coding DNA and genomic mapping.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Twin studies are a major research direction in imaging genetics, a new field, which combines algorithms from quantitative genetics and neuroimaging to assess genetic effects on the brain. In twin imaging studies, it is common to estimate the intraclass correlation (ICC), which measures the resemblance between twin pairs for a given phenotype. In this paper, we extend the commonly used Pearson correlation to a more appropriate definition, which uses restricted maximum likelihood methods (REML). We computed proportion of phenotypic variance due to additive (A) genetic factors, common (C) and unique (E) environmental factors using a new definition of the variance components in the diffusion tensor-valued signals. We applied our analysis to a dataset of Diffusion Tensor Images (DTI) from 25 identical and 25 fraternal twin pairs. Differences between the REML and Pearson estimators were plotted for different sample sizes, showing that the REML approach avoids severe biases when samples are smaller. Measures of genetic effects were computed for scalar and multivariate diffusion tensor derived measures including the geodesic anisotropy (tGA) and the full diffusion tensors (DT), revealing voxel-wise genetic contributions to brain fiber microstructure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multiple sclerosis (MS) is a debilitating, chronic demyelinating disease of the central nervous system affecting over 2 million people worldwide. The TAM family of receptor tyrosine kinases (TYRO3, AXL and MERTK) have been implicated as important players during demyelination in both animal models of MS and in the human disease. We therefore conducted an association study to identify single nucleotide polymorphisms (SNPs) within genes encoding the TAM receptors and their ligands associated with MS. Analysis of genotype data from a genome-wide association study which consisted of 1618 MS cases and 3413 healthy controls conducted by the Australia and New Zealand Multiple Sclerosis Genetics Consortium (ANZgene) revealed several SNPs within the MERTK gene (Chromosome 2q14.1, Accession Number NG_011607.1) that showed suggestive association with MS. We therefore interrogated 28 SNPs in MERTK in an independent replication cohort of 1140 MS cases and 1140 healthy controls. We found 12 SNPs that replicated, with 7 SNPs showing p-values of less than 10-5 when the discovery and replication cohorts were combined. All 12 replicated SNPs were in strong linkage disequilibrium with each other. In combination, these data suggest the MERTK gene is a novel risk gene for MS susceptibility. © 2011 Ma et al.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: A number of genetic-association studies have identified genes contributing to ankylosing spondylitis (AS) susceptibility but such approaches provide little information as to the gene activity changes occurring during the disease process. Transcriptional profiling generates a 'snapshot' of the sampled cells' activity and thus can provide insights into the molecular processes driving the disease process. We undertook a whole-genome microarray approach to identify candidate genes associated with AS and validated these gene-expression changes in a larger sample cohort. Methods: A total of 18 active AS patients, classified according to the New York criteria, and 18 gender- and age-matched controls were profiled using Illumina HT-12 whole-genome expression BeadChips which carry cDNAs for 48,000 genes and transcripts. Class comparison analysis identified a number of differentially expressed candidate genes. These candidate genes were then validated in a larger cohort using qPCR-based TaqMan low density arrays (TLDAs). Results: A total of 239 probes corresponding to 221 genes were identified as being significantly different between patients and controls with a P-value <0.0005 (80% confidence level of false discovery rate). Forty-seven genes were then selected for validation studies, using the TLDAs. Thirteen of these genes were validated in the second patient cohort with 12 downregulated 1.3- to 2-fold and only 1 upregulated (1.6-fold). Among a number of identified genes with well-documented inflammatory roles we also validated genes that might be of great interest to the understanding of AS progression such as SPOCK2 (osteonectin) and EP300, which modulate cartilage and bone metabolism. Conclusions: We have validated a gene expression signature for AS from whole blood and identified strong candidate genes that may play roles in both the inflammatory and joint destruction aspects of the disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ankylosing spondylitis is a highly heritable, common rheumatic condition, primarily affecting the axial skeleton. The association with HLA-B27 has been demonstrated worldwide, and evidence for a role of HLA-B27 in disease comes from linkage and association studies in humans, and transgenic animal models. However, twin studies indicate that HLA-B27 contributes only 16% of the total genetic risk for disease. Furthermore, there is compelling evidence that non-B27 genes, both within and outwith the major histocompatability complex, are involved in disease aetiology. In this post-genomic era we have the tools to help elicit the genetic basis of disease. This review describes methods for genetic investigation of ankylosing spondylitis, and summarises the status of current research in this exciting area.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective. Unconfirmed reports describe association of ankylosing spondylitis (AS) with several candidate genes including ANKH. Cellular export of inorganic pyrophosphate is regulated by the ANK protein, and mutant mice (ank/ank), which have a premature stop codon in the 3′ end of the ank gene, develop severe ankylosis. We tested the association between single-nucleotide polymorphisms (SNP) in these genes and susceptibility to AS in a population of patients with AS. We investigated the role of these genes in terms of functional (BASFI) and metrological (BASMI) measures, and the association with radiological severity (mSASSS). Methods. Our study was conducted on 355 patients with AS and 95 ethnically matched healthy controls. AS was defined according to the modified New York criteria. Four SNP in ANKH (rs27356, rs26307, rs25957, and rs28006) were genotyped. Association analysis was performed using Cochrane-Armitage and linear regression tests for dichotomous and quantitative variables. Analyses of Bath Ankylosing Spondylitis Disease Activity Index (BASDAI), BASFI, and mSASSS were controlled for sex and disease duration. Results. None of the 4 markers showed significant single-locus disease associations (p > 0.05), suggesting that ANKH was not a major determinant of AS susceptibility in our population. No association was observed between these SNP and age at symptom onset, BASDAI, BASFI, BASMI, or mSASSS. Conclusion. These results confirm data in white Europeans that ANKH is probably not a major determinant of susceptibility to AS. ANKH polymorphisms do not markedly influence AS disease severity, as measured by BASMI and mSASSS. The Journal of Rheumatology

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Androgen withdrawal is the only effective form of systemic therapy for men with advanced disease, producing symptomatic and/or objective response in 80% of patients. Unfortunately, androgen independent (AI) progression and death occurs within a few years in the majority of these cases (6). Prostate cancer is highly chemoresistant, with objective response rates of 10% and no demonstrated survival benefit (28). Hormone refractory prostate cancer (HRPC) is therefore the main obstacle to improving the survival and quality of life in patients with advanced disease, and novel therapeutic strategies that target the molecular basis of androgen and chemoresistance are required.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Both sorghum (Sorghum bicolor) and sugarcane (Saccharum officinarum) are members of the Andropogoneae tribe in the Poaceae and are each other's closest relatives amongst cultivated plants. Both are relatively recent domesticates and comparatively little of the genetic potential of these taxa and their wild relatives has been captured by breeding programmes to date. This review assesses the genetic gains made by plant breeders since domestication and the progress in the characterization of genetic resources and their utilization in crop improvement for these two related species. Genetic Resources: The genome of sorghum has recently been sequenced providing a great boost to our knowledge of the evolution of grass genomes and the wealth of diversity within S. bicolor taxa. Molecular analysis of the Sorghum genus has identified close relatives of S. bicolor with novel traits, endosperm structure and composition that may be used to expand the cultivated gene pool. Mutant populations (including TILLING populations) provide a useful addition to genetic resources for this species. Sugarcane is a complex polyploid with a large and variable number of copies of each gene. The wild relatives of sugarcane represent a reservoir of genetic diversity for use in sugarcane improvement. Techniques for quantitative molecular analysis of gene or allele copy number in this genetically complex crop have been developed. SNP discovery and mapping in sugarcane has been advanced by the development of high-throughput techniques for ecoTILLING in sugarcane. Genetic linkage maps of the sugarcane genome are being improved for use in breeding selection. The improvement of both sorghum and sugarcane will be accelerated by the incorporation of more diverse germplasm into the domesticated gene pools using molecular tools and the improved knowledge of these genomes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

MADAM, Androgenetic alopecia (AGA) is a common age-dependent trait, characterized by a progressive loss of hair from the scalp. The hair loss may commence during puberty and up to 80% of white men experience some degree of AGA during their lifetime.1 Research has established that two essential aetiological factors for AGA are a genetic predisposition and the presence of androgens (male sex hormones).1,2 A recent meta-analysis of genome-wide association studies (GWAS) has increased the number of identified loci associated with this trait at the molecular level to a total of eight.3 However, despite these successes, a large fraction of the genetic contribution remains to be identified. One way to identify further genetic loci is to combine the resource of GWAS datasets with knowledge about specific biological factors likely to be involved in the development of disease. The focused evaluation of a limited number of candidate genes in GWAS datasets avoids the necessity for extensive correction for multiple testing, which typically limits the power for detecting genetic loci at a genome-wide level.4 Because the presence of genetic association suggests that candidate genes are likely to operate early in the causative chain of events leading to the phenotype, this approach may also function to favour biological pathways for their importance in the development of AGA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report here development and characterization of 48 novel microsatellite markers for Ropalidia marginata, a tropical, primitively eusocial polistine wasp from peninsular India. Thirty-two microsatellites showed polymorphism in a wild population of R. marginata (N = 38) collected from Bangalore, India. These markers will facilitate answering some interesting questions in ecology and evolutionary biology of this wasp, such as population structure, serial polygyny, intra-colony genetic relatedness and the pattern of queen succession.