952 resultados para Rubisco small subunit gene ( rbcS) Promoter
Resumo:
The population genetic structure of fish parasitic nematode, Camallanus cotti, collected from the Yangtze River, Pearl River and Minjiang River in China was investigated. From these parasites, the similar to 730 bp of the first internal transcribed spacer of ribosomal DNA (ITS1 rDNA) and the 428 bp of mitochondrial cytochrome c oxidase subunit I (COI) gene were sequenced. For the ITS1 rDNA data set, highly significant Fst values and low rates of migration were detected between the Pearl River group and both the Yangtze River (Fst = 0.70, P < 0.00001; Nm = 0.21) and Minjiang River (Fst = 0.73, P < 0.00001; Nm = 0.18) groups, while low Fst value (Fst = 0.018, P > 0.05) and high rate of migration (Nm = 28.42) were found between the Minjiang and the Yangtze rivers. When different host/locality populations (subpopulations) within each river were considered, subpopulations between the Yangtze River and Minjiang River had low Fst values (<= 0.12) and high Nm values (>3.72), while Pearl River subpopulations were significantly different from the Yangtze River and Minjiang River subpopulations (Fst >= 0.59; Nm < 1). The COI gene data set revealed a similar genetic structure. Both phylogenetic analyses and a statistical parsimony network grouped the Pearl River haplotypes into one phylogroup, while the Yangtze River and Minjiang River haplotypes formed a second group. These results suggested that the Yangtze River and Minjiang River subpopulations constituted a single reproductive pool that was distinct from the Pearl River subpopulations. In addition, the present study did not find host-related genetic differentiation occurring in the same drainage. (C) 2009 Published by Elsevier B.V.
Resumo:
Aromatase plays a key role in sex differentiation of gonads. In this study, we cloned the full-length cDNA of ovarian aromatase from protogynous hermaphrodite red-spotted grouper (Epinephelus akaara), and prepared the corresponding anti-EaCyp19a1a antiserum. Western blot and immunofluorescence studies revealed ovary-specific expression pattern of EaCyp19a1a in adults and its dynamic expression change during artificial sex reversal. EaCyp19a1a was expressed by follicular cells of follicular layer around oocytes because strong EaCyp19a1a immunofluorescence was observed in the cells of ovaries. During artificial sex reversal, EaCyp19a1a expression dropped significantly from female to male, and almost no any positive EaCyp19a1a signal was observed in testicular tissues. Then, we cloned and sequenced a total of 1967 bp T-flanking sequence of EaCyp19a1a promoter, and showed a number of potential binding sites for some transcriptional factors, such as SOX5, GATA gene family, CREB, AP1, FOXL1, C/EBP, ARE and SF-1. Moreover, we prepared a series of 5' deletion promoter constructs and performed in vitro luciferase assays of EaCyp19a1a promoter activities. The data indicated that the CREB regulation region from -1010 to -898 might be a major cis-acting element to EaCyp19a1a promoter, whereas the elements GATA and SOX5 in the region from -1216 to -1010 might be suppression elements. Significantly, we found a common conserved sequence region in the fish ovary-type aromatase promoters with identities from 93% to 34%. And, the motifs of TATA box, SF-1, SOX5, and CREB existed in the region and were conserved among the most of fish species. (C) 2009 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Multiple type I interferons (IFNs) have recently been identified in salmonids, containing two or four conserved cysteines. In this work, a novel two-cysteine containing (2C) IFN gene was identified in rainbow trout. This novel trout IFN gene (termed IFN5) formed a phylogenetic group that is distinct from the other three salmonid IFN groups sequenced to date and had a close evolutionary relationship with IFNs from advanced fish species. Our data demonstrate that two subgroups are apparent within each of the 2C and 4C type I IFNs, an evolutionary outcome possibly due to two rounds of genome duplication events that have occurred within teleosts. We have examined gene expression of the trout 2C type I IFN in cultured cells following stimulation with lipopolysaccharide, phytohaemagglutinin, polyI:C or recombinant IFN, or after transfection with polyI:C. The kinetics of gene expression was also studied after viral infection. Analysis of the regulatory elements in the IFN promoter region predicted several binding sites for key transcription factors that potentially play an important role in mediating IFN5 gene expression.
Resumo:
Natural killer (NK) cell enhancing factor (NKEF) belongs to the newly defined peroxiredoxin (Prx) family. Its functions are to enhance NK cell cytotoxicity and to protect DNA and proteins from oxidative damage. In this study, a partial cDNA sequence of carp NKEF-B was isolated from thymus cDNA library. Subsequently, the full-length cDNA of carp NKEF-B was obtained by means of 3' and 5' RACE, respectively. The full-length cDNA of carp NKEF-B was 1022 bp, consisting of a 73 bp 5'-terminal untranslated region (UTR), a 355 bp T-terminal UTR, and a 594 bp open reading frame coding for a protein of 197 amino acids. Carp NKEF-B contained two consensus Val-Cys-Pro (VCP) motifs and three consensus cysteine (Cys-51, Cys-70 and Cys-172) residues. Sequence comparison showed that the deduced amino acid sequence of carp NKEF-B had an overall similarity of 74-96% to that of other species homologues. Phylogenetic analysis revealed that carp NKEF-B forms a cluster with other known teleost NKEF-Bs. Then, by PCR we obtained a 5.1 -k long genomic DNA of carp NKEF-B containing six exons and five introns. Realtime RT-PCR results showed that carp NKEF-B gene was predominantly detected in kidney and head kidney under un-infected conditions. Whereas under SVCV-infection condition, the expression of NKEF-B gene was significantly increased in blood cells, gill, intestine and spleen, but maintained in liver, and decreased significantly in kidney and head kidney. Finally, the rNKEF-B was constructed and expressed in Escherichia coli. By using an antibody against carp rNKEF-B, immunohistochemical study further indicated that NKEF-B positive cells are mainly some RBCs and a few epithelial cells in gill and intestine, and that under SVCV-infection condition, these positive cells or positive products in their cytoplasm were mainly increased in gill and spleen sections of carp. The results obtained in the present study will help to understand the function of NKEF-B in teleost innate immunity. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The metallothionein-2 (MT-2) gene was isolated from the mandarin fish, one of the most important industrial aquatic animals in China, by using rapid amplification of cDNA ends (RACE). The deduced amino acid sequence of MT-2 comprised 60 amino acids and showed approximately 62.3% identity to human metallothionein. Its promoter region was amplified by thermal asymmetric interlaced polymerase chain reaction (TAIL-PCR). The MT-2 gene consists of 3 exons and 2 introns, extending approximately 900 bp of genomic sequence. Phylogenetic analysis clearly demonstrated that MT-2 formed a clade with fish metallothionein. The promoter region contained 5 putative metal-regulatory elements (MREs) and 1 TATA box. Real-time quantitative RT-PCR analysis revealed that MT-2 transcripts were significantly increased in the brain and gills and were stable in the muscles, liver, and trunk kidney in Cd2+-stimulated fish. Western blotting analysis demonstrated that the protein of the MT-2 gene was expressed mainly in the gills, liver, heart, trunk kidney, muscle, and intestine; it was weakly detected in the brain and head kidney. Moreover, the MT-2 protein was immunohistochemically detected in the cytoplasm in the liver and trunk kidney. All the above results revealed that the mandarin fish MT-2 would be a useful biomarker for metal pollution. (C) 2008 Published by Elsevier Inc.
Resumo:
Short hairpin RNA (shRNA) directed by RNA polymerase III (Pol III) or Pol II promoter was shown to be capable of silencing gene expression, which should permit analyses of gene functions or as a potential therapeutic tool. However, the inhibitory effect of shRNA remains problematic in fish. We demonstrated that silencing efficiency by shRNA produced from the hybrid construct composed of the CMV enhancer or entire CMV promoter placed immediately upstream of a U6 promoter. When tested the exogenous gene, silencing of an enhanced green fluorescent protein (EGFP) target gene was 89.18 +/- 5.06% for CMVE-U6 promoter group and 88.26 +/- 6.46% for CMV-U6 promoter group. To test the hybrid promoters driving shRNA efficiency against an endogenous gene, we used shRNA against no tail (NTL) gene. When vectorized in the zebrafish, the hybrid constructs strongly repressed NTL gene expression. The NTL phenotype occupied 52.09 +/- 3.06% and 51.56 +/- 3.68% for CMVE-U6 promoter and CMV-U6 promoter groups, respectively. The NTL gene expression reduced 82.17 +/- 2.96% for CMVE-U6 promoter group and 83.06 +/- 2.38% for CMV-U6 promoter group. We concluded that the CMV enhancer or entire CMV promoter locating upstream of the U6-promoter could significantly improve inhibitory effect induced by the shRNA for both exogenous and endogenous genes compared with the CMV promoter or U6 promoter alone. In contrast, the two hybrid promoter constructs had similar effects on driving shRNA.
Resumo:
The ability to utilize the RNA interference (RNAi) machinery for silencing target-gene expression has created a lot of excitement in the research community. In the present study, we used a cytomegalovirus (CMV) promoter-driven DNA template approach to induce short hairpin RNA (shRNA) triggered RNAi to block exogenous Enhanced Green Fluorescent Protein (EGFP) and endogenous No Tail (NTL) gene expressions. We constructed three plasmids, pCMV-EGFP-CMV-shGFP-SV40, pCMV-EGFP-CMV-shNTL-SV40, and pCMV-EGFP-CMV-shScrambled-SV40, each containing a CMV promoter driving an EGFP reporter cDNA and DNA coding for one shRNA under the control of another CMV promoter. The three shRNA-generating plasmids and pCMV-EGFP control plasmid were introduced into zebrafish embryos by microinjection. Samples were collected at 48 h after injection. Results were evaluated by phenotype observation and real-time fluorescent quantitative reverse-transcription polymerase chain reaction (Q-PCR). The shGFP-generating plasmid significantly inhibited the EGFP expression viewed under fluorescent microscope and reduced by 70.05 +/- 1.26% of exogenous EGFP gene mRNA levels compared with controls by Q-PCR. The shRNA targeting endogenous NTL gene resulted in obvious NTL phenotype of 30 +/- 4% and decreased the level of their corresponding mRNAs up to 54.52 +/- 2.05% compared with nontargeting control shRNA. These data proved the feasibility of the CMV promoter-driven shRNA expression technique to be used to inhibit exogenous and endogenous gene expressions in zebrafish in vivo.
Resumo:
The complete genome of mandarin fish Siniperca chuatsi rhabdovirus (SCRV) was cloned and sequenced. It comprises 11,545 nucleotides and contains five genes encoding the nucleoprotein N, the phosphoprotein P, the matrix protein M, the glycoprotein G, and the RNA-dependent RNA polymerase protein L. At the 3' and 5' termini of SCRV genome, leader and trailer sequences show inverse complementarity. The N, P, M and G proteins share the highest sequence identities (ranging from 14.8 to 41.5%) with the respective proteins of rhabdovirus 903/87, the L protein has the highest identity with those of vesiculoviruses, especially with Chandipura virus (44.7%). Phylogenetic analysis of L proteins showed that SCRV clustered with spring vireamia of carp virus (SVCV) and was most closely related to viruses in the genus Vesiculovirus. In addition, an overlapping open reading frame (ORF) predicted to encode a protein similar to vesicular stomatitis virus C protein is present within the P gene of SCRV. Furthermore, an unoverlapping small ORF downstream of M ORF within M gene is predicted (tentatively called orf4). Therefore, the genomic organization of SCRV can be proposed as 3' leader-N-P/C-M-(orf4)-G-L-trailer 5'. Orf4 transcription or translation products could not be detected by northern or Western blot, respectively, though one similar mRNA band to M mRNA was found. This is the first report on one small unoverlapping ORF in M gene of a fish rhabdovirus. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is one of the TNF superfamily members, participating in many biological processes including cell proliferation and apoptotic death. In this study, a TRAIL gene was cloned from a perciform fish, the mandarin fish Siniperca chuatsi, a major cultured fish in China's aquaculture, and is named as SCTRAIL for S. chuatsi TRAIL. The full-length cDNA of SCTRAIL is 1359 bp, encoding a 283-amino-acid protein. This deduced protein contains the CYS231, a 23-mer fragment of transmembrane region, a glycosylation site and a TNF family signature, all of which are conserved among TRAIL members. SCTRAIL gene consists of six exons, with five intervening introns, spaced over approximately 9 kb of genomic sequence. Southern blotting demonstrated that the SCTRAIL gene is present as a single copy in mandarin fish genome. A 620 bp promoter region obtained by genome walking contains a number of putative transcription factor binding sites, such as Oct-1, Sp-1, NF-1, RAP-1, C/EBPaLp, NF-kappa B and AP-1. The SCTRAIL is constitutively expressed in all the analyzed tissues, as revealed by RT-PCR, which is confirmed by Western blotting analysis using polyclonal antibody against bacteria-derived recombinant SCTRAIL protein. As an apoptosis-inducing ligand, the overexpression of SCTRAIL but not the mutant SCTRAIL-C203S in HeLa cells induced changes characteristic of apoptosis, including chromatin condensation, nucleus fragmentation, DNA ladder, and increase of sub-G0/G1 cells in FACS analysis. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Wild-type Anabaena sp. strain PCC 7120, a filamentous nitrogen-fixing cyanobacterium, produces single heterocysts at semi-regular intervals. asr0100 (patU5) and alr0101 (patU3) are homologous to the 5' and 3' portions of patU of Nostoc punctiforme. alr0099 (hetZ) overlaps the 5' end of patU5. hetZ, patU5 and patU3 were all upregulated, or expressed specifically, in proheterocysts and heterocysts. Mutants of hetZ showed delayed or no heterocyst differentiation. In contrast, a patU3 mutation produced a multiple contiguous heterocyst (Mch) phenotype and restored the formation of otherwise lost intercalary heterocysts in a patA background. Decreasing the expression of patU3 greatly increased the frequency of heterocysts in a mini-patS strain. Two promoter regions and two principal, corresponding transcripts were detected in the hetZ-patU5-patU3 region. Transcription of hetZ was upregulated in a hetZ mutant and downregulated in a patU3 mutant. When mutants hetZ::C.K2 and hetZ::Tn5-1087b were nitrogen-deprived, P-hetC-gfp was very weakly expressed, and in hetZ::Tn5-1087b, P-hetR-gfp was relatively strongly expressed in cells that had neither a regular pattern nor altered morphology. We conclude that the hetZ-patU5-patU3 cluster plays an important role in co-ordination of heterocyst differentiation and pattern formation. The presence of homologous clusters in filamentous genera without heterocysts is suggestive of a more general role.
Resumo:
Previous studies have demonstrated that germinal vesicle of amphibian oocyte contains small nuclear ribonucleoprotein polypeptide C (SNRPC). In this study, a putative member of SNRPC was identified from Carassius auratus gibelio oocyte cDNA library. Its full-length cDNA has an open reading frame of 201 nt for encoding a peptide of 66 an, a short 5'-UTR of 19 nt and a long 3'-UTR of 347 nt including a polyadenylation signal and poly- (A) tail, and the deduced amino acid sequence has 47% identity with the C-terminal of the zebrafish small nuclear ribonucleoprotein polypeptide C. Western blot analysis revealed its oocyte-specific expression. Immunofluorescence localization indicated that its gene product localized to numerous nucleoli within the oocytes and showed dynamic changes with the nucleoli during oocyte maturation. RT-PCR and Western blot analysis further revealed its constant presence in the oocytes and in the embryos until hatching. The data suggested that the newly identified CagOSNRPC might be a nucleolar protein. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
In study of gene expression profile in cloned embryos which derived from D. rerio embryonic nuclei and G. rarus enucleated eggs, cytochrome c oxidase subunit I (COXI) of G. rarus, exhibiting difference at expression level between cloned embryos and zebrafish embryo, was cloned. Its full cDNA length is 1654 bp and contains a 1551 bp open reading frame, encoding a 5.64 kDa protein of 516 amino acids. The alignment result shows that mitochondrion tRNA(ser) is co-transcripted with COXI, which just was the 3'-UTR of COXI. Molecular phylogenic analysis based on COXI indicates G. rarus should belong to Gobioninae, which was not in agreement with previous study according to morphological taxonomy. Comparison of DNA with cDNA shows that RNA editing phenomenon does not occur in the COXI of G. rarus.
Resumo:
The cDNAs and genes of two different types of leucine- rich repeat-containing proteins from grass carp ( Ctenopharyngodon idellus) were cloned. Homology search revealed that the two genes, designated as GC-GARP and GC-LRG, have 37% and 32% deduced aminoacid sequence similarities with human glycoprotein A repetitions predominant precursor ( GARP) and leucine-rich alpha2-glycoprotein (LRG), respectively. The cDNAs of GC-GARP and GC-LRG encoded 664 and 339 amino acid residues, respectively. GC-GARP and GC-LRG contain many distinct structural and/or functional motifs of the leucine- rich repeat (LRR) subfamily, such as multiple conserved 11-residue segments with the consensus sequence LxxLxLxxN/CxL ( x can be any amino acid). The genes GC-GARP and GC-LRG consist of two exons, with 4,782 bp and 2,119 bp in total length, respectively. The first exon of each gene contains a small 5'-untranslated region and partial open reading frame. The putative promoter region of GC-GARP was found to contain transcription factor binding sites for GATA-1, IRF4, Oct-1, IRF-7, IRF-1, AP1, GATA-box and NFAT, and the promoter region of GC-LRG for MYC-MAX, MEIS1, ISRE, IK3, HOXA9 and C/EBP alpha. Phylogenetic analysis showed that GC-GARP and mammalian GARPs were clustered into one branch, while GC-LRG and mammalian LRGs were in another branch. The GC-GARP gene was only detected in head kidney, and GC-LRG in the liver, spleen and heart in the copepod ( Sinergasilus major)- infected grass carp, indicating the induction of gene expression by the parasite infection. The results obtained in the present study provide insight into the structure of fish LRR genes, and further study should be carried out to understand the importance of LRR proteins in host - pathogen interactions.
Resumo:
To clarify cuttlefish phylogeny, mitochondrial cytochrome c oxidase subunit 1 (COI) gene and partial 16S rRNA gene are sequenced for 13 cephalopod species. Phylogenetic trees are constructed, with the neighbor-joining method. Coleoids are divided into two main lineages, Decabrachia and Octobrachia. The monophyly of the order Sepioidea, which includes the families Sepiidae, Sepiolidae and Idiosepiidae, is not supported. From the two families of Sepioidea examined, the Sepiolidae are polyphyletic and are excluded from the order. On the basis of 16S rRNA and amino acid of COI gene sequences data, the two genera (Sepiella and Sepia) from the Sepiidae can be distinguished, but do not have a visible boundary using COI gene sequences. The reason is explained. This suggests that the 16S rDNA of cephalopods is a precious tool to analyze taxonomic relationships at the genus level, and COI gene is fitter at a higher taxonomic level (i.e., family).
Resumo:
Embryonic stem (ES) cells provide a unique tool for introducing random or targeted genetic alterations, because it is possible that the desired, but extremely rare recombinant genotypes can be screened by drug selection. ES cell-mediated transgenesis has so far been limited to the mouse. In the fish medaka (Oryzias latipes) several ES cell lines have been made available. Here we report the optimized conditions for gene transfer and drug selection in the medaka ES cell line MES1 as a prelude for gene targeting in fish. MES1 cells gave rise to a moderate to high transfection efficiency by the calcium phosphate co-precipitation (5%), commercial reagents Fugene (11%), GeneJuice (21%) and electroporation (>30%). Transient gene transfer and CAT reporter assay revealed that several enhancers/promoters and their combinations including CMV, RSV and ST (the SV40 virus early gene enhancer linked to the thymidine kinase promoter) were suitable regulatory sequences to drive transgene expression in the MES1 cells. We show that neo, hyg or pac conferred resistance to G418, hygromycin or puromycin for positive selection, while the HSV-tk generated sensitivity to ganciclovir for negative selection. The positive-negative selection procedure that is widely used for gene targeting in mouse ES cells was found to be effective also in MES1 cells. Importantly, we demonstrate that MES1 cells after gene transfer and long-term drug selection retained the developmental pluripotency, as they were able to undergo induced differentiation in vitro and to contribute to various tissues and organs during chimeric embryogenesis.