837 resultados para Rubber composites


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives: The aim of this study was to examine the effect of pre-warmed composite on the microhardness and marginal adaptation. Methods: Ninety six identical class II cavities were prepared in extracted human molars and filled/cured in three 2 mm increments using a metal matrix. Two composites (Tetric Evo Ceram (IvoclarVivadent) and ELS(Saremco)) were cured with a LED curing unit (Bluephase (IvoclarVivadent)) using curing cycles of 20 and 40 seconds. The composite was used at room temperature or pre-warmed at 54.5ºC (Calset(AdDent)). Twelve teeth were filled for every composite-curing time-composite temperature combination. The teeth were thermocycled (1000 cycles at 5º and 55ºC) and then stored at 37° C for seven days . Dye penetration (basic fuchsine 5% for 8 hours) was measured using a score scale. Knoop microhardness was determined 100, 200, 500, 1000, 1500, 2500, 3500, 4500 and 5500µm from the occlusal surface at a distance of 150 and 1000µm from the metal matrix. The total degree of polymerization of a composite specimen was determined by calculating the area under the hardness curve. Results: Statistical analyses showed no difference in marginal adaptation (p>0.05). Hardness values at 150µm from the matrix were lower than those at 1000µm. There was an increase of the microhardness at the top of each increment and decrease towards the bottom of each increment. Longer curing times resulted in harder composite samples. Multiple linear regression showed that only the curing time (p<0.001) and composite material (p<0.001) had a significant association with the degree of polymerization. The degree of polymerization was not influenced by pre-warming the composite at a temperature of 54.5ºC (p=4.86). Conclusion: Polymerization time can not be reduced by pre-warming the composite on a temperature of 54.5ºC. The marginal adaptation is not compromised by pre-warming the composite.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim of the investigation was to assess the effect of different surface treatments on the bond strength of veneering ceramics to zirconia. In a shear test, the influences of polishing, sandblasting, and silica-coating of the zirconia surface on bonding were assessed with five different veneering ceramics. In addition the effect of liner application was examined. With one veneering ceramic, the impact of regeneration firing of zirconia was also evaluated. Statistical analysis was performed with one-way ANOVA and post hoc Scheffé's test. Failure in every case occurred in the veneering ceramic adjacent to the interface with a thin layer of ceramic remaining on the zirconia surface, indicating that bond strength was higher than the cohesive strength of the veneering ceramic. Shear strength ranged from 23.5 +/- 3.4 MPa to 33.0 +/- 6.8 MPa without explicit correlation to the respective surface treatment. Regeneration firing significantly decreased the shear strength of both polished and sandblasted surfaces. Findings of this study revealed that bonding between veneering ceramics and zirconia might be based on chemical bonds. On this note, sandblasting was not a necessary surface pretreatment to enhance bond strength and that regeneration firing was not recommended.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wood plastic composites (WPCs) have gained popularity as building materials because of their usefulness in replacing solid wood in a variety of applications. These composites are promoted as being low-maintenance, high-durability products. However, it has been shown that WPCs exposed to weathering may experience a color change and/or loss in mechanical properties. An important requirement for building materials used in outdoor applications is the retention of their aesthetic qualities and mechanical properties during service life. Therefore, it is critical to understand the photodegradation mechanisms of WPCs exposed to UV radiation and to develop approaches to stabilize these composites (both unstabilized and stabilized) as well as the effect of weathering on the color fade and the retention of mechanical properties were characterized. Since different methods of manufacturing WPCs lead to different surface characteristics, which can influence weathering, the effect of manufacturing method on the photodegradation of WPCs was investigated first. Wood flour (WF) filled high-density polyethylene (HDPE) composite samples were either injection molded, extruded, or extruded and then planed. Fourier transform infrared (FTIR) spectroscopy was used to monitor the surface chemistry of the manufactured composites. The spectra showed that the surface of planed samples had more wood component than extruded and injection molded samples, respectively. After weathering, the samples were analyzed for color fade, and loss of flexural properties. The final lightness of the composites was not dependent upon the manufacturing method. However the mechanical property loss was dependent upon manufacturing method. The samples with more wood component at the surface (planed samples) experienced a larger percentage of total loss in flexural properties after weathering due to a greater effect of moisture on the samples. The change in surface chemistry of HDPE and WF/HDPE composites after weathering was studied using spectroscopic techniques. X-ray photoelectron spectroscopy (XPS) was used to characterize the occurrence of surface oxidation whereas FTIR spectroscopy was used to monitor the development of degradation products, such as carbonyl groups and vinyl groups, and to determine changes in HDPE crystallinity. Surface oxidation occurred immediately after exposure for both the neat HDPE and WF/HDPE composites. After weathering, the surface of the WF/HDPE composites was oxidized to a greater extent than the neat HDPE after weathering. This suggests that photodegradation is exacerbated by the addition of the carbonyl functional groups of the wood fibers within the HDPE atrix during composite manufacturing. While neat HDPE may undergo cross-linking in the initial stages of accelerated weathering, the WF may physically hinder the ability of the HDPE to cross-link resulting in the potential for HDPE chain scission to dominate in the initial weathering stages of the WF/HDPE composites. To determine which photostabilizers are most effective for WF/HDPE composites, factorial experimental designes were used to determine the effects of adding two hindered amine light stabilizers, an ultraviolet absorber, and a pigment on the color made and mechanical properties of both unweathered and UV weathered samples. Both the pigment and ultraviolet absorber were more effective photostabilizers for WF/HDPE composites than hinder amine light stabilizers. The ineffectiveness of hindered amine light stabilizers in protecting WPCs against UV radiation was attribuated to the acid/base reactions occurring between the WF and hindered amine light stabilizer. The efficiency of an ultraviolet absorber and/or pigment was also examined by incorporating different concentration of an ultraviolet absorber and/or pigment into WF/HDPE composites. Color change and flexural properties were determined after accelerated UV weathering. The lightness of the composite after weathering was influenced by the concentration of both the ultraviolet absorber by masking the bleaching wood component as well as blocking UV light. Flexural MOE loss was influenced by an increase in ultraviolet absorber concentration, but increasing pigment concentration from 1 to 2% had little influence on MOE loss. However, increasing both ultraviolet absorber and pigment concentration resulted in improved strength properties over the unstabilized composites after 3000 h of weather. Finally, the change in surface chemistry due to weathering of WF/HDPE composites that were either unstabilized or stabilized with an ultraviolet absorber and/or pigment was analyzed using FTIR spectroscopy. The samples were tested for loss in modulus of elasticity, carbonyl and vinyl group formation at the surface, and change in HDPE crystallinity. It was concluded that structural changes in the samples; carbonyl group formation, terminal vinyl group formation, and crystallinity changes cannot reliably be used to predict changes in modulus of elasticity using a simple linear relationship. The effect of cross-linking, chain scission, and crystallinity changes due to ultraviolet exposure as well as the interfacial degradation due to moisture exposure are inter-related factors when weathering HDPE and WF/HDPE composites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this project we developed conductive thermoplastic resins by adding varying amounts of three different carbon fillers: carbon black (CB), synthetic graphite (SG) and multi-walled carbon nanotubes (CNT) to a polypropylene matrix for application as fuel cell bipolar plates. This component of fuel cells provides mechanical support to the stack, circulates the gases that participate in the electrochemical reaction within the fuel cell and allows for removal of the excess heat from the system. The materials fabricated in this work were tested to determine their mechanical and thermal properties. These materials were produced by adding varying amounts of single carbon fillers to a polypropylene matrix (2.5 to 15 wt.% Ketjenblack EC-600 JD carbon black, 10 to 80 wt.% Asbury Carbon's Thermocarb TC-300 synthetic graphite, and 2.5 to 15 wt.% of Hyperion Catalysis International's FIBRILTM multi-walled carbon nanotubes) In addition, composite materials containing combinations of these three fillers were produced. The thermal conductivity results showed an increase in both through-plane and in-plane thermal conductivities, with the largest increase observed for synthetic graphite. The Department of Energy (DOE) had previously set a thermal conductivity goal of 20 W/m·K, which was surpassed by formulations containing 75 wt.% and 80 wt.% SG, yielding in-plane thermal conductivity values of 24.4 W/m·K and 33.6 W/m·K, respectively. In addition, composites containing 2.5 wt.% CB, 65 wt.% SG, and 6 wt.% CNT in PP had an in–plane thermal conductivity of 37 W/m·K. Flexural and tensile tests were conducted. All composite formulations exceeded the flexural strength target of 25 MPa set by DOE. The tensile and flexural modulus of the composites increased with higher concentration of carbon fillers. Carbon black and synthetic graphite caused a decrease in the tensile and flexural strengths of the composites. However, carbon nanotubes increased the composite tensile and flexural strengths. Mathematical models were applied to estimate through-plane and in-plane thermal conductivities of single and multiple filler formulations, and tensile modulus of single-filler formulations. For thermal conductivity, Nielsen's model yielded accurate thermal conductivity values when compared to experimental results obtained through the Flash method. For prediction of tensile modulus Nielsen's model yielded the smallest error between the predicted and experimental values. The second part of this project consisted of the development of a curriculum in Fuel Cell and Hydrogen Technologies to address different educational barriers identified by the Department of Energy. By the creation of new courses and enterprise programs in the areas of fuel cells and the use of hydrogen as an energy carrier, we introduced engineering students to the new technologies, policies and challenges present with this alternative energy. Feedback provided by students participating in these courses and enterprise programs indicate positive acceptance of the different educational tools. Results obtained from a survey applied to students after participating in these courses showed an increase in the knowledge and awareness of energy fundamentals, which indicates the modules developed in this project are effective in introducing students to alternative energy sources.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cellulose-polymer composites have potential applications in aerospace and transportation areas where lightweight materials with high mechanical properties are needed. In addition, these economical and biodegradable composites have been shown to be useful as polymer electrolytes, packaging structures, optoelectronic devices, and medical implants such as wound dressing and bone scaffolds. In spite of the above mentioned advantages and potential applications, due to the difficulties associated with synthesis and processing techniques, application of cellulose crystals (micro and nano sized) for preparation of new composite systems is limited. Cellulose is hydrophilic and polar as opposed to most of common thermoplastics, which are non-polar. This results in complications in addition of cellulose crystals to polymer matrices, and as a result in achieving sufficient dispersion levels, which directly affects the mechanical properties of the composites. As in other composite materials, the properties of cellulose-polymer composites depend on the volume fraction and the properties of individual phases (the reinforcement and the polymer matrix), the dispersion quality of the reinforcement through the matrix and the interaction between CNCs themselves and CNC and the matrix (interphase). In order to develop economical cellulose-polymer composites with superior qualities, the properties of individual cellulose crystals, as well as the effect of dispersion of reinforcements and the interphase on the properties of the final composites should be understood. In this research, the mechanical properties of CNC polymer composites were characterized at the macro and nano scales. A direct correlation was made between: Dispersion quality and macro-mechanical properties Nanomechanical properties at the surface and tensile properties CNC diameter and interphase thickness Lastly, individual CNCs from different sources were characterized and for the first time size-scale effect on their nanomechanical properties were reported. Then the effect of CNC surface modification on the mechanical properties was studied and correlated to the crystalline structure of these materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ferroic materials, as notable members of smart materials, have been widely used in applications that perform sensing, actuation and control. The macroscopic property change of ferroic materials may become remarkably large during ferroic phase transition, leading to the fact that the macroscopic properties can be tuned by carefully applying a suitable external field (electric, magnetic, stress). To obtain an enhancement in physical and/or mechanical properties, different kinds of ferroic composites have been fabricated. The properties of a ferroic composite are determined not only by the properties and relative amounts of the constituent phases, but also by the microstructure of individual phase such as the phase connectivity, phase size, shape and spatial arrangement. This dissertation mainly focuses on the computational study of microstructure – property – mechanism relations in two representative ferroic composites, i.e., two-phase particulate magnetoelectric (ME) composite and polymer matrix ferroelectric composite. The former is a great example of ferroic composite exhibiting a new property and functionality that neither of the constituent phases possesses individually. The latter well represents the kind of ferroic composites having property combinations that are better than the existing materials. Phase field modeling was employed as the computing tool, and the required models for ferroic composites were developed based on existing models for monolithic materials. Extensive computational simulations were performed to investigate the microstructure-property relations and the underlying mechanism in ferroic composites. In particulate, it is found that for ME composite 0-3 connectivity (isolated magnetostrictive phase) is necessary to exhibit ME effect, and small but finite electrical conductivity of isolated magnetic phase can beneficially enhance ME effect. It is revealed that longitudinal and transverse ME coefficients of isotropic 0-3 particulate composites can be effectively tailored by controlling magnetic domain structures without resort to anisotropic two-phase microstructures. Simulations also show that the macroscopic properties of the ferroelectricpolymer composites critically depend on the ferroelectric phase connectivity while are not sensitive to the sizes and internal grain structures of the ceramic particles. Texturing is found critical to exploit the paraelectric«ferroelectric phase transition and nonlinear polarization behavior in paraelectric polycrystal and its polymer matrix composite. Additionally, a Diffuse Interface Field model was developed to simulate packing and motion in liquid phase which is promising for studying the fabrication of particulatepolymer composites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electronic absorption and fluorescence spectra based on transmission measurements of thin layers obtained from new perylene−zeolite L composites and new dye1,dye2−zeolite L sandwich composites, the latter acting as antenna systems, have been investigated and analyzed. The influence of extra- and intraparticle self-absorption on the spectral shape and fluorescence quantum yield is discussed in detail. Due to its intraparticle origin, self-absorption and re-emission can often not be avoided in organized systems such as dye−zeolite L composites where a high density of chromophores is a prerequisite for obtaining the desired photophysical properties. We show, however, that it can be avoided or at least minimized by preparing dye1,dye2−zeolite L sandwich composites where donors are present in a much larger amount than the acceptors because they act as antenna systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND Rubber dam is recommended for isolating the working field during adhesive dentistry procedures; however, dentists often omit rubber dam, particularly in paediatric dentistry, supposing that it would stress the patient. AIM The aim of this study was to evaluate stress parameters during a standardized dental treatment procedure performed with or without rubber dam. The treatment time was measured as a secondary outcome variable. DESIGN This study was designed as a randomized, controlled, clinical study with 72 patients (6-16 years; mean age, 11.1). During standardized fissure sealing procedures, objective parameters of stress (e.g., skin resistance, breath rate) were recorded. The operator's stress level was measured by pulse rate. Subjective pain (patients) and stress perception (operator) were evaluated by an interview. RESULTS The breath rate was significantly (P<0.05) lower and the skin resistance level was significantly higher during treatment with rubber dam compared to the control group. Subjective pain perception was significantly lower for the test group. The treatment time needed for the fissure sealing procedure was 12.4% less in the test group. CONCLUSION Isolation with rubber dam caused less stress in children and adolescents compared to relative isolation with cotton rolls if applied by an experienced dentist.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Brushite and octacalcium phosphate (OCP) crystals are well-known precursors of hydroxylapatite (HAp), the main mineral found in bone. In this report, we present a new method for biomimicking brushite and OCP using single and double diffusion techniques. Brushite and OCP crystals were grown in an iota-carrageenan gel. The aggregates were analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD), infrared spectroscopy (IR) and thermal gravimetric analysis (TGA). SEM revealed different morphologies of brushite crystals from highly porous aggregates to plate-shaped forms. OCP crystals grown in iota-carrageenan showed a porous spherical shape different from brushite growth forms. The XRD method demonstrated that the single-diffusion method favors the formation of monoclinic brushite. In contrast, the double diffusion method was found to promote the formation of the triclinic octacalcium phosphate OCP phase. By combining the different parameters for crystal growth in carrageenan, such as ion concentration, gel pH and gel density, it is possible to modify the morphology of composite crystals, change the phase of calcium phosphate and modulate the amount of carrageenan inclusion in crystals. This study suggests that iota-carrageenan is a high-molecular-weight polysaccharide that is potentially applicable for controlling calcium phosphate crystallization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND Bodily sensations are an important component of corporeal awareness. Spinal cord injury can leave affected body parts insentient and unmoving, leading to specific disturbances in the mental representation of one's own body and the sense of self. OBJECTIVE Here, we explored how illusions induced by multisensory stimulation influence immediate sensory signals and tactile awareness in patients with spinal cord injuries. METHODS The rubber hand illusion paradigm was applied to 2 patients with chronic and complete spinal cord injury of the sixth cervical spine, with severe somatosensory impairments in 2 of 5 fingers. RESULTS Both patients experienced a strong illusion of ownership of the rubber hand during synchronous, but not asynchronous, stroking. They also, spontaneously reported basic tactile sensations in their previously numb fingers. Tactile awareness from seeing the rubber hand was enhanced by progressively increasing the stimulation duration. CONCLUSIONS Multisensory illusions directly and specifically modulate the reemergence of sensory memories and enhance tactile sensation, despite (or as a result of) prior deafferentation. When sensory inputs are lost, and are later illusorily regained, the brain updates a coherent body image even several years after the body has become permanently unable to feel. This particular example of neural plasticity represents a significant opportunity to strengthen the sense of the self and the feelings of embodiment in patients with spinal cord injury.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The goal of the present study was to evaluate the effect of different methods of rubber-ring castration on acute and chronic pain in calves. Sixty-three 4-6 week-old calves were randomly and sequentially allocated to one of five groups: Group RR (traditional rubber ring castration); group BRR (combination of one rubber ring with Burdizzo); group Rcut (one rubber ring applied with the scrotal tissue and rubber ring removed on day 9); group 3RR (three rubber rings placed one above the other around the scrotal neck); and group CO (controls; sham-castrated). All calves received 0.2 mL/kg bodyweight lidocaine 2%, injected into the spermatic cords and around the scrotal neck 15 min before castration. The presence of acute and chronic pain was assessed using plasma cortisol concentrations, response to palpation of scrotal area, time from castration until complete wound healing, and behavioural signs. Calves of group 3RR showed severe swelling and inflammation, and licking of the scrotal area occurred significantly more often than in groups Rcut and CO. Technique 3RR was discontinued for welfare reasons before the end of the study. All castration groups had significantly more pain upon palpation than calves of group CO, but palpation elicited markedly less pain in group Rcut than in the other castration groups. The most rapid healing time and shortest duration of chronic pain after castration was achieved in group Rcut. For welfare reasons, the Rcut technique should be considered as a valuable alternative to traditional rubber ring castration of calves at 4-6 weeks of age.