927 resultados para Rotating disks
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Objective: This study evaluated the surface hardness of a resin cement (RelyX ARC) photoactivated through indirect composite resin (Cristobal) disks of different thicknesses using either a light- emitting diode (LED) or quartz tungsten halogen (QTH) light source. Material and Methods: Eighteen resin cement specimens were prepared and divided into 6 groups according to the type of curing unit and the thickness of resin disks interposed between the cement surface and light source. Three indentations (50 g for 15 s) were performed on the top and bottom surface of each specimen and a mean Vickers hardness number (VHN) was calculated for each specimen. The data were analyzed using two-way ANOVA and Tukey-Kramer test was used for post-hoc pairwise comparisons. Results: Increased indirect resin disk thickness resulted in decreased mean VHN values. Mean VHN values for the top surfaces of the resin cement specimens ranged from 23.2 to 46.1 (QTH) and 32.3 to 41.7 (LED). The LED curing light source produced higher hardness values compared to the QTH light source for 2- and 3-mm-thick indirect resin disks. The differences were clinically, but not statistically significant. Increased indirect resin disk thickness also resulted in decreased mean VHN values for the bottom surfaces of the resin cement: 5.8 to 19.1 (QTH) and 7.5 to 32.0 (LED). For the bottom surfaces, a statistically significant interaction was also found between the type of curing light source and the indirect resin disk thickness. Conclusions: Mean surface hardness values of resin cement specimens decreased with the increase of indirect resin disk thickness. The LED curing light source generally produced higher surface hardness values.
Resumo:
This study tested the bond strength of a resin cement to a glass-infiltrated zirconia-alumina ceramic after three conditioning methods and using two test methods (shear-SBS versus microtensile-MTBS). Ceramic blocks for MTBS and ceramic disks for SBS were fabricated. Three surface conditioning (SC) methods were evaluated: (1) 110-mu m Al(2)O(3)+Silanization; (2) Chairside silica coating+silanization: (3) Laboratory silica coating+silanization. Following surface conditioning, the resin cement (Panavia F) was bonded to the conditioned ceramics. Although no statistically significant differences (p=0.1076) were seen between the test methods, results yielded with the different surface conditioning methods showed statistically significant differences (p<0.0001) (SC2=SC3>SC1.). As for the interaction between the factors, two-way ANOVA showed that it was not statistically significant (p=0.1443). MTBS test resulted in predominantly mixed failure (85%), but SBS test resulted in exclusively adhesive failure. on the effects of different surface conditioning methods, chairside and laboratory tribochemical silica coating followed by silanization showed higher bond strength results compared to those of aluminum oxide abrasion and silanization, independent of the test method employed.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We study the equation of state for neutron matter using the Walecka model including quantum corrections for baryons and sigma mesons through a realignment of the vacuum. We next use this equation of state to calculate the radius, mass and other properties of rotating neutron star.
Resumo:
Using the explicit numerical solution of the axially symmetric Gross-Pitaevskii equation, we study the oscillation of the Bose-Einstein condensate (BEC) induced by a periodic variation in the atomic scattering length a. When the frequency of oscillation of a is an even multiple of the radial or axial trap frequency, respectively, the radial or axial oscillation of the condensate exhibits resonance with a novel feature. In this nonlinear problem without damping, at resonance in the steady state the amplitude of oscillation passes through a maximum and minimum. Such a growth and decay cycle of the amplitude may keep on repeating. Similar behaviour is also observed in a rotating BEC.
Resumo:
The stationary cosmological model without closed timelike curves of Godel type is obtained for the ideal dust matter source within the framework of the teleparallel gravity. For a specific choice of the teleparallel gravity parameters, this solution reproduces the causality violating stationary Godel solution in general relativity, in accordance with the teleparallel equivalent of general relativity. The relation between the axial-vector torsion and the cosmic vorticity is clarified. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Using variational and numerical solutions of the mean-field Gross-Pitaevskii equation we show that a bright soliton can be stabilized in a trapless three-dimensional attractive Bose-Einstein condensate (BEC) by a rapid periodic temporal modulation of scattering length alone by using a Feshbach resonance. This scheme also stabilizes a rotating vortex soliton in two dimensions. Apart from possible experimental application in BEC, the present study suggests that the spatiotemporal solitons of nonlinear optics in three dimensions can also be stabilized in a layered Kerr medium with sign-changing nonlinearity along the propagation direction.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper concerns a type of rotating machine (centrifugal vibrator), which is supported on a nonlinear spring. This is a nonideal kind of mechanical system. The goal of the present work is to show the striking differences between the cases where we take into account soft and hard spring types. For soft spring, we prove the existence of homoclinic chaos. By using the Melnikov's Method, we show the existence of an interval with the following property: if a certain parameter belongs to this interval, then we have chaotic behavior; otherwise, this does not happen. Furthermore, if we use an appropriate damping coefficient, the chaotic behavior can be avoided. For hard spring, we prove the existence of Hopf's Bifurcation, by using reduction to Center Manifolds and the Bezout Theorem (a classical result about algebraic plane curves).
Resumo:
A practical problem of synchronization of a non-ideal (i.e. when the excitation is influenced by the response of the system) and non-linear vibrating system was posed and investigated by means of numerical simulations. Two rotating unbalanced motors compose the mathematical model considered here with limited power supply mounted on the horizontal beam of a simple portal frame. As a starting point, the problem is reduced to a four-degrees-of-freedom model and its equations of motion, derived elsewhere via a Lagrangian approach, are presented. The numerical results show the expected phenomena associated with the passage through resonance with limited power. Further, for a two-to-one relationship between the frequencies associated with the first symmetric mode and the sway mode, by using the variation of torque constants, the control of the self-synchronization and synchronization (in the system) are observed at certain levels of excitations.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The complete I-V characteristics of SnO(2)-based varistors, particularly of the Pianaro system SCNCr consisting in 98.9%SnO(2)+1%CoO+0.05%Nb(2)O(5)+0.05%Cr(2)O(3), all in mol%, have been seldom reported in the literature. A comparative study at low and high currents of the nonohmic behavior of SCNCr- and ZnO-based varistors (modified Matsuoka system) is proposed in this work. The SCNCr system showed higher nonlinearity coefficients in the whole range of measured current. The electrical breakdown field (E(b)) was twice as high for the SCNCr system (5400 V/cm) than for the ZnO varistor (2600 V/cm) due to a smaller average grain size of the former (4.5 mu m) with respect to the latter (8.5 mu m). Nevertheless, we consider that another important factor responsible for the high E(b) in the SCNCr system is the great number of electrically active interfaces (85%) as determined with electrostatic force microscopy (EFM). It was also established that the SCNCr system might be produced in disks of smaller dimensions than that of commercial ZnO-based product, with a 5.0 cm(-1) minimal area-volume (A/V) ratio. The SCNCr reached the saturation current in a short time because of the high resistivity of the grains, which is five times higher than that of the grains in ZnO-based varistors.