934 resultados para Robust planning


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper tackles the problem of computing smooth, optimal trajectories on the Euclidean group of motions SE(3). The problem is formulated as an optimal control problem where the cost function to be minimized is equal to the integral of the classical curvature squared. This problem is analogous to the elastic problem from differential geometry and thus the resulting rigid body motions will trace elastic curves. An application of the Maximum Principle to this optimal control problem shifts the emphasis to the language of symplectic geometry and to the associated Hamiltonian formalism. This results in a system of first order differential equations that yield coordinate free necessary conditions for optimality for these curves. From these necessary conditions we identify an integrable case and these particular set of curves are solved analytically. These analytic solutions provide interpolating curves between an initial given position and orientation and a desired position and orientation that would be useful in motion planning for systems such as robotic manipulators and autonomous-oriented vehicles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new robust neurofuzzy model construction algorithm has been introduced for the modeling of a priori unknown dynamical systems from observed finite data sets in the form of a set of fuzzy rules. Based on a Takagi-Sugeno (T-S) inference mechanism a one to one mapping between a fuzzy rule base and a model matrix feature subspace is established. This link enables rule based knowledge to be extracted from matrix subspace to enhance model transparency. In order to achieve maximized model robustness and sparsity, a new robust extended Gram-Schmidt (G-S) method has been introduced via two effective and complementary approaches of regularization and D-optimality experimental design. Model rule bases are decomposed into orthogonal subspaces, so as to enhance model transparency with the capability of interpreting the derived rule base energy level. A locally regularized orthogonal least squares algorithm, combined with a D-optimality used for subspace based rule selection, has been extended for fuzzy rule regularization and subspace based information extraction. By using a weighting for the D-optimality cost function, the entire model construction procedure becomes automatic. Numerical examples are included to demonstrate the effectiveness of the proposed new algorithm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this correspondence new robust nonlinear model construction algorithms for a large class of linear-in-the-parameters models are introduced to enhance model robustness via combined parameter regularization and new robust structural selective criteria. In parallel to parameter regularization, we use two classes of robust model selection criteria based on either experimental design criteria that optimizes model adequacy, or the predicted residual sums of squares (PRESS) statistic that optimizes model generalization capability, respectively. Three robust identification algorithms are introduced, i.e., combined A- and D-optimality with regularized orthogonal least squares algorithm, respectively; and combined PRESS statistic with regularized orthogonal least squares algorithm. A common characteristic of these algorithms is that the inherent computation efficiency associated with the orthogonalization scheme in orthogonal least squares or regularized orthogonal least squares has been extended such that the new algorithms are computationally efficient. Numerical examples are included to demonstrate effectiveness of the algorithms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This letter introduces a new robust nonlinear identification algorithm using the Predicted REsidual Sums of Squares (PRESS) statistic and for-ward regression. The major contribution is to compute the PRESS statistic within a framework of a forward orthogonalization process and hence construct a model with a good generalization property. Based on the properties of the PRESS statistic the proposed algorithm can achieve a fully automated procedure without resort to any other validation data set for iterative model evaluation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A large and complex IT project may involve multiple organizations and be constrained within a temporal period. An organization is a system comprising of people, activities, processes, information, resources and goals. Understanding and modelling such a project and its interrelationship with relevant organizations are essential for organizational project planning. This paper introduces the problem articulation method (PAM) as a semiotic method for organizational infrastructure modelling. PAM offers a suite of techniques, which enables the articulation of the business, technical and organizational requirements, delivering an infrastructural framework to support the organization. It works by eliciting and formalizing (e. g. processes, activities, relationships, responsibilities, communications, resources, agents, dependencies and constraints) and mapping these abstractions to represent the manifestation of the "actual" organization. Many analysts forgo organizational modelling methods and use localized ad hoc and point solutions, but this is not amenable for organizational infrastructures modelling. A case study of the infrared atmospheric sounding interferometer (IASI) will be used to demonstrate the applicability of PAM, and to examine its relevancy and significance in dealing with the innovation and changes in the organizations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes a real-time multi-camera surveillance system that can be applied to a range of application domains. This integrated system is designed to observe crowded scenes and has mechanisms to improve tracking of objects that are in close proximity. The four component modules described in this paper are (i) motion detection using a layered background model, (ii) object tracking based on local appearance, (iii) hierarchical object recognition, and (iv) fused multisensor object tracking using multiple features and geometric constraints. This integrated approach to complex scene tracking is validated against a number of representative real-world scenarios to show that robust, real-time analysis can be performed. Copyright (C) 2007 Hindawi Publishing Corporation. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a new strategy for controlling rigid-robot manipulators in the presence of parametric uncertainties or un-modelled dynamics. The strategy combines an adaptation law with a well known robust controller proposed by Spong, which is derived using Lyapunov's direct method. Although the tracking problem of manipulators has been successfully solved with different strategies, there are some conditions under which their efficiency is limited. Specifically, their performance decreases when unknown loading masses or model disturbances are introduced. The aim of this work is to show that the proposed strategy performs better than existing algorithms, as verified with real-time experimental results with a Puma-560 robot. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The National Housing and Planning Advice Unit commissioned Professor Michael Ball of Reading University to undertake empirical research into how long it was taking to obtain planning consent for major housing sites in England. The focus on sites as opposed to planning applications is important because it is sites that generate housing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Radial basis function networks can be trained quickly using linear optimisation once centres and other associated parameters have been initialised. The authors propose a small adjustment to a well accepted initialisation algorithm which improves the network accuracy over a range of problems. The algorithm is described and results are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Genetic algorithms (GAs) have been introduced into site layout planning as reported in a number of studies. In these studies, the objective functions were defined so as to employ the GAs in searching for the optimal site layout. However, few studies have been carried out to investigate the actual closeness of relationships between site facilities; it is these relationships that ultimately govern the site layout. This study has determined that the underlying factors of site layout planning for medium-size projects include work flow, personnel flow, safety and environment, and personal preferences. By finding the weightings on these factors and the corresponding closeness indices between each facility, a closeness relationship has been deduced. Two contemporary mathematical approaches - fuzzy logic theory and an entropy measure - were adopted in finding these results in order to minimize the uncertainty and vagueness of the collected data and improve the quality of the information. GAs were then applied to searching for the optimal site layout in a medium-size government project using the GeneHunter software. The objective function involved minimizing the total travel distance. An optimal layout was obtained within a short time. This reveals that the application of GA to site layout planning is highly promising and efficient.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although the use of climate scenarios for impact assessment has grown steadily since the 1990s, uptake of such information for adaptation is lagging by nearly a decade in terms of scientific output. Nonetheless, integration of climate risk information in development planning is now a priority for donor agencies because of the need to prepare for climate change impacts across different sectors and countries. This urgency stems from concerns that progress made against Millennium Development Goals (MDGs) could be threatened by anthropogenic climate change beyond 2015. Up to this time the human signal, though detectable and growing, will be a relatively small component of climate variability and change. This implies the need for a twin-track approach: on the one hand, vulnerability assessments of social and economic strategies for coping with present climate extremes and variability, and, on the other hand, development of climate forecast tools and scenarios to evaluate sector-specific, incremental changes in risk over the next few decades. This review starts by describing the climate outlook for the next couple of decades and the implications for adaptation assessments. We then review ways in which climate risk information is already being used in adaptation assessments and evaluate the strengths and weaknesses of three groups of techniques. Next we identify knowledge gaps and opportunities for improving the production and uptake of climate risk information for the 2020s. We assert that climate change scenarios can meet some, but not all, of the needs of adaptation planning. Even then, the choice of scenario technique must be matched to the intended application, taking into account local constraints of time, resources, human capacity and supporting infrastructure. We also show that much greater attention should be given to improving and critiquing models used for climate impact assessment, as standard practice. Finally, we highlight the over-arching need for the scientific community to provide more information and guidance on adapting to the risks of climate variability and change over nearer time horizons (i.e. the 2020s). Although the focus of the review is on information provision and uptake in developing regions, it is clear that many developed countries are facing the same challenges. Copyright © 2009 Royal Meteorological Society

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Little has so far been reported on the robustness of non-orthogonal space-time block codes (NO-STBCs) over highly correlated channels (HCC). Some of the existing NO-STBCs are indeed weak in robustness against HCC. With a view to overcoming such a limitation, a generalisation of the existing robust NO-STBCs based on a 'matrix Alamouti (MA)' structure is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An alternative blind deconvolution algorithm for white-noise driven minimum phase systems is presented and verified by computer simulation. This algorithm uses a cost function based on a novel idea: variance approximation and series decoupling (VASD), and suggests that not all autocorrelation function values are necessary to implement blind deconvolution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several non-orthogonal space-time block coding (NO-STBC) schemes have recently been proposed to achieve full rate transmission. Some of these schemes, however, suffer from weak robustness: their channel matrices will become ill conditioned in the case of highly correlated channels (HCC). To address this issue, this paper derives a family of robust NO-STBC schemes for four Tx antennas based on the worst case of HCC. These codes turned out to be a superset of Jafarkhani's quasi-orthogonal STBC codes. A computationally affordable linear decoder is also proposed. Although these codes achieve a similar performance to the non-robust schemes under normal channel conditions, they offer a strong robustness against HCC (although possibly yielding a poorer performance). Finally, computer simulations are presented to verify the algorithm design.