828 resultados para Robotic soccer
Resumo:
Determinar el efecto de la cirugía laparoscópica versus cirugía abierta sobre la supervivencia en el manejo de pacientes del cáncer colorectal.
Resumo:
Esta investigación se centra en la Fédération Internationale de Football Association (FIFA) como organización política. Intenta responder dos interrogantes primordiales: 1) ¿cómo la FIFA ha constituido el poder que tiene actualmente y, así, hacerse del monopolio indiscutido del fútbol? Y 2) ¿cómo ha cambiado en el tiempo la política interna de FIFA y su vínculo con la política internacional? Para lograr esto, se realiza un estudio histórico, basado principalmente en documentos, que intenta caracterizar y analizar los cambios de la organización en el tiempo. Se enfatizan las últimas dos presidencias de FIFA, de João Havelange y Joseph Blatter, como casos de estudio.
Resumo:
Darrerament, l'interès pel desenvolupament d'aplicacions amb robots submarins autònoms (AUV) ha crescut de forma considerable. Els AUVs són atractius gràcies al seu tamany i el fet que no necessiten un operador humà per pilotar-los. Tot i això, és impossible comparar, en termes d'eficiència i flexibilitat, l'habilitat d'un pilot humà amb les escasses capacitats operatives que ofereixen els AUVs actuals. L'utilització de AUVs per cobrir grans àrees implica resoldre problemes complexos, especialment si es desitja que el nostre robot reaccioni en temps real a canvis sobtats en les condicions de treball. Per aquestes raons, el desenvolupament de sistemes de control autònom amb l'objectiu de millorar aquestes capacitats ha esdevingut una prioritat. Aquesta tesi tracta sobre el problema de la presa de decisions utilizant AUVs. El treball presentat es centra en l'estudi, disseny i aplicació de comportaments per a AUVs utilitzant tècniques d'aprenentatge per reforç (RL). La contribució principal d'aquesta tesi consisteix en l'aplicació de diverses tècniques de RL per tal de millorar l'autonomia dels robots submarins, amb l'objectiu final de demostrar la viabilitat d'aquests algoritmes per aprendre tasques submarines autònomes en temps real. En RL, el robot intenta maximitzar un reforç escalar obtingut com a conseqüència de la seva interacció amb l'entorn. L'objectiu és trobar una política òptima que relaciona tots els estats possibles amb les accions a executar per a cada estat que maximitzen la suma de reforços totals. Així, aquesta tesi investiga principalment dues tipologies d'algoritmes basats en RL: mètodes basats en funcions de valor (VF) i mètodes basats en el gradient (PG). Els resultats experimentals finals mostren el robot submarí Ictineu en una tasca autònoma real de seguiment de cables submarins. Per portar-la a terme, s'ha dissenyat un algoritme anomenat mètode d'Actor i Crític (AC), fruit de la fusió de mètodes VF amb tècniques de PG.
Resumo:
La tesis propone un marco de trabajo para el soporte de la toma de decisiones adecuado para soportar la ejecución distribuida de acciones cooperativas en entornos multi-agente dinámicos y complejos. Soporte para la toma de decisiones es un proceso que intenta mejorar la ejecución de la toma de decisiones en escenarios cooperativos. Este proceso ocurre continuamente en la vida diaria. Los humanos, por ejemplo, deben tomar decisiones acerca de que ropa usar, que comida comer, etc. En este sentido, un agente es definido como cualquier cosa que está situada en un entorno y que actúa, basado en su observación, su interpretación y su conocimiento acerca de su situación en tal entorno para lograr una acción en particular.Por lo tanto, para tomar decisiones, los agentes deben considerar el conocimiento que les permita ser consientes en que acciones pueden o no ejecutar. Aquí, tal proceso toma en cuenta tres parámetros de información con la intención de personificar a un agente en un entorno típicamente físico. Así, el mencionado conjunto de información es conocido como ejes de decisión, los cuales deben ser tomados por los agentes para decidir si pueden ejecutar correctamente una tarea propuesta por otro agente o humano. Los agentes, por lo tanto, pueden hacer mejores decisiones considerando y representando apropiadamente tal información. Los ejes de decisión, principalmente basados en: las condiciones ambientales, el conocimiento físico y el valor de confianza del agente, provee a los sistemas multi-agente un confiable razonamiento para alcanzar un factible y exitoso rendimiento cooperativo.Actualmente, muchos investigadores tienden a generar nuevos avances en la tecnología agente para incrementar la inteligencia, autonomía, comunicación y auto-adaptación en escenarios agentes típicamente abierto y distribuidos. En este sentido, esta investigación intenta contribuir en el desarrollo de un nuevo método que impacte tanto en las decisiones individuales como colectivas de los sistemas multi-agente. Por lo tanto, el marco de trabajo propuesto ha sido utilizado para implementar las acciones concretas involucradas en el campo de pruebas del fútbol robótico. Este campo emula los juegos de fútbol real, donde los agentes deben coordinarse, interactuar y cooperar entre ellos para solucionar tareas complejas dentro de un escenario dinámicamente cambiante y competitivo, tanto para manejar el diseño de los requerimientos involucrados en las tareas como para demostrar su efectividad en trabajos colectivos. Es así que los resultados obtenidos tanto en el simulador como en el campo real de experimentación, muestran que el marco de trabajo para el soporte de decisiones propuesto para agentes situados es capaz de mejorar la interacción y la comunicación, reflejando en un adecuad y confiable trabajo en equipo dentro de entornos impredecibles, dinámicos y competitivos. Además, los experimentos y resultados también muestran que la información seleccionada para generar los ejes de decisión para situar a los agentes, es útil cuando tales agentes deben ejecutar una acción o hacer un compromiso en cada momento con la intención de cumplir exitosamente un objetivo colectivo. Finalmente, algunas conclusiones enfatizando las ventajas y utilidades del trabajo propuesto en la mejora del rendimiento colectivo de los sistemas multi-agente en situaciones tales como tareas coordinadas y asignación de tareas son presentadas.
Resumo:
La tesis pretende explorar acercamientos computacionalmente confiables y eficientes de contractivo MPC para sistemas de tiempo discreto. Dos tipos de contractivo MPC han sido estudiados: MPC con coacción contractiva obligatoria y MPC con una secuencia contractiva de conjuntos controlables. Las técnicas basadas en optimización convexa y análisis de intervalos son aplicadas para tratar MPC contractivo lineal y no lineal, respectivamente. El análisis de intervalos clásicos es ampliado a zonotopes en la geometría para diseñar un conjunto invariante de control terminal para el modo dual de MPC. También es ampliado a intervalos modales para tener en cuenta la modalidad al calcula de conjuntos controlables robustos con una interpretación semántica clara. Los instrumentos de optimización convexa y análisis de intervalos han sido combinados para mejorar la eficacia de contractive MPC para varias clases de sistemas de tiempo discreto inciertos no lineales limitados. Finalmente, los dos tipos dirigidos de contractivo MPC han sido aplicados para controlar un Torneo de Fútbol de Copa Mundial de Micro Robot (MiroSot) y un Tanque-Reactor de Mezcla Continua (CSTR), respectivamente.
Resumo:
This thesis addresses the problem of learning in physical heterogeneous multi-agent systems (MAS) and the analysis of the benefits of using heterogeneous MAS with respect to homogeneous ones. An algorithm is developed for this task; building on a previous work on stability in distributed systems by Tad Hogg and Bernardo Huberman, and combining two phenomena observed in natural systems, task partition and hierarchical dominance. This algorithm is devised for allowing agents to learn which are the best tasks to perform on the basis of each agent's skills and the contribution to the team global performance. Agents learn by interacting with the environment and other teammates, and get rewards from the result of the actions they perform. This algorithm is specially designed for problems where all robots have to co-operate and work simultaneously towards the same goal. One example of such a problem is role distribution in a team of heterogeneous robots that form a soccer team, where all members take decisions and co-operate simultaneously. Soccer offers the possibility of conducting research in MAS, where co-operation plays a very important role in a dynamical and changing environment. For these reasons and the experience of the University of Girona in this domain, soccer has been selected as the test-bed for this research. In the case of soccer, tasks are grouped by means of roles. One of the most interesting features of this algorithm is that it endows MAS with a high adaptability to changes in the environment. It allows the team to perform their tasks, while adapting to the environment. This is studied in several cases, for changes in the environment and in the robot's body. Other features are also analysed, especially a parameter that defines the fitness (biological concept) of each agent in the system, which contributes to performance and team adaptability. The algorithm is applied later to allow agents to learn in teams of homogeneous and heterogeneous robots which roles they have to select, in order to maximise team performance. The teams are compared and the performance is evaluated in the games against three hand-coded teams and against the different homogeneous and heterogeneous teams built in this thesis. This section focuses on the analysis of performance and task partition, in order to study the benefits of heterogeneity in physical MAS. In order to study heterogeneity from a rigorous point of view, a diversity measure is developed building on the hierarchic social entropy defined by Tucker Balch. This is adapted to quantify physical diversity in robot teams. This tool presents very interesting features, as it can be used in the future to design heterogeneous teams on the basis of the knowledge on other teams.
Resumo:
Different optimization methods can be employed to optimize a numerical estimate for the match between an instantiated object model and an image. In order to take advantage of gradient-based optimization methods, perspective inversion must be used in this context. We show that convergence can be very fast by extrapolating to maximum goodness-of-fit with Newton's method. This approach is related to methods which either maximize a similar goodness-of-fit measure without use of gradient information, or else minimize distances between projected model lines and image features. Newton's method combines the accuracy of the former approach with the speed of convergence of the latter.
Resumo:
Robotic and manual methods have been used to obtain identification of significantly changing proteins regulated when Schizosaccharomyces pombe is exposed to oxidative stress. Differently treated S. pombe cells were lysed, labelled with CyDye and analysed by two-dimensional difference gel electrophoresis. Gel images analysed off-line, using the DeCyder image analysis software [GE Healthcare, Amersham, UK] allowed selection of significantly regulated proteins. Proteins displaying differential expression were excised robotically for manual digestion and identified by matrix-assisted laser desorption/ionisation - mass spectrometry (MALDI-MS). Additionally the same set of proteins displaying differential expression were automatically cut and digested using a prototype robotic platform. Automated MALDI-MS, peak label assignment and database searching were utilised to identify as many proteins as possible. The results achieved by the robotic system were compared to manual methods. The identification of all significantly altered proteins provides an annotated peroxide stress-related proteome that can be used as a base resource against which other stress-induced proteomic changes can be compared.
Resumo:
Robotic and manual methods have been used to obtain identification of significantly changing proteins regulated when Schizosaccharomyces pombe is exposed to oxidative stress. Differently treated S. pombe cells were lysed, labelled with CyDye (TM) and analysed by two-dimensional difference gel. electrophoresis. Gel images analysed off-line, using the DeCyder (TM) image analysis software [GE Healthcare, Amersham, UK] allowed selection of significantly regulated proteins. Proteins displaying differential expression were excised robotically for manual digestion and identified by matrix-assisted laser desorption/ionisation - mass spectrometry (MALDI-MS). Additionally the same set of proteins displaying differential expression were automatically cut and digested using a prototype robotic platform. Automated MALDI-MS, peak label assignment and database searching were utilised to identify as many proteins as possible. The results achieved by the robotic system were compared to manual methods. The identification of all significantly altered proteins provides an annotated peroxide stress-related proteome that can be used as a base resource against which other stress-induced proteomic changes can be compared.
Resumo:
The efficacy of explicit and implicit learning paradigms was examined during the very early stages of learning the perceptual-motor anticipation task of predicting ball direction from temporally occluded footage of soccer penalty kicks. In addition, the effect of instructional condition on point-of-gaze during learning was examined. A significant improvement in horizontal prediction accuracy was observed in the explicit learning group; however, similar improvement was evident in a placebo group who watched footage of soccer matches. Only the explicit learning intervention resulted in changes in eye movement behaviour and increased awareness of relevant postural cues. Results are discussed in terms of methodological and practical issues regarding the employment of implicit perceptual training interventions. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
In this paper we present experimental results for the dual robot transport of an extended payload. Two robotic rovers that were designed specifically for the extended payload transport task are described. Each rover incorporates a 4-DOF robot arm incorporating three active joints (one of which is a gripper), a passive wrist, and a mobile base which employs a rocker-bogie design. A set of behaviours has been developed to support the performance of the task, integrating simple sensing with controls. We describe the behaviours and their integration within the overall task structure. The experimental results presented focus on the manipulation elements of the task, but incorporate a complete cycle of pick-up, traversal, and putdown.
Resumo:
This paper develops a novel method of actuation for robotic hands. The solution employs Bowden cable routed to each joint as the means by which the finger is actuated. The use of Bowden cable is shown to be feasible for this purpose, even with the changing frictional forces associated with it's use. This method greatly simplifies the control of the hand by removing the coupling between joints, and allows for direct and accurate translation between the joints and the motors driving the Bowden wires. The design also allows for two degrees of freedom (with the same centre of rotation) to be realised in the largest knuckle of each finger, meaning biological finger kinematics are more accurately emulated.
Resumo:
Improving admittance of robotic joints is the key issue for making rehabilitation robots safe. This paper describes a design of Redundant Drive Joint (RD-Joint) which allows greater flexibility in the design of robotic mechanisms. The design strategy of the RD-Joint employs a systematic approach which consists of 1) adopting a redundant joint mechanism with internal kinematical redundancy to reduce effective joint inertia, and 2) adopting an adjustable admittance mechanism with a novel Cross link Reduction Mechanism and mechanical springs and dampers as a passive second actuator. First, the basic concepts used to construct the redundant drive joint mechanism are explained, in particular the method that allows a reduction in effective inertia at the output joint. The basic structure of the RD-Joint is introduced based on the idea of reduced inertia along with a method to include effective stiffness and damping. Then, the basic design of the adjustable admittance mechanism is described. Finally, a prototype of RD-joint is described and its expected characteristics are discussed.
Resumo:
Space applications demand the need for building reliable systems. Autonomic computing defines such reliable systems as self-managing systems. The work reported in this paper combines agent-based and swarm robotic approaches leading to swarm-array computing, a novel technique to achieve self-managing distributed parallel computing systems. Two swarm-array computing approaches based on swarms of computational resources and swarms of tasks are explored. FPGA is considered as the computing system. The feasibility of the two proposed approaches that binds the computing system and the task together is simulated on the SeSAm multi-agent simulator.
Resumo:
The work reported in this paper is motivated by biomimetic inspiration - the transformation of patterns. The major issue addressed is the development of feasible methods for transformation based on a macroscopic tool. The general requirement for the feasibility of the transformation method is determined by classifying pattern formation approaches an their characteristics. A formal definition for pattern transformation is provided and four special cases namely, elementary and geometric transformation based on repositioning all and some robotic agents are introduced. A feasible method for transforming patterns geometrically, based on the macroscopic parameter operation of a swarm is considered. The transformation method is applied to a swarm model which lends itself to the transformation technique. Simulation studies are developed to validate the feasibility of the approach, and do indeed confirm the approach.