990 resultados para Robbins, Monte
Resumo:
The electron Monte Carlo (eMC) dose calculation algorithm available in the Eclipse treatment planning system (Varian Medical Systems) is based on the macro MC method and uses a beam model applicable to Varian linear accelerators. This leads to limitations in accuracy if eMC is applied to non-Varian machines. In this work eMC is generalized to also allow accurate dose calculations for electron beams from Elekta and Siemens accelerators. First, changes made in the previous study to use eMC for low electron beam energies of Varian accelerators are applied. Then, a generalized beam model is developed using a main electron source and a main photon source representing electrons and photons from the scattering foil, respectively, an edge source of electrons, a transmission source of photons and a line source of electrons and photons representing the particles from the scrapers or inserts and head scatter radiation. Regarding the macro MC dose calculation algorithm, the transport code of the secondary particles is improved. The macro MC dose calculations are validated with corresponding dose calculations using EGSnrc in homogeneous and inhomogeneous phantoms. The validation of the generalized eMC is carried out by comparing calculated and measured dose distributions in water for Varian, Elekta and Siemens machines for a variety of beam energies, applicator sizes and SSDs. The comparisons are performed in units of cGy per MU. Overall, a general agreement between calculated and measured dose distributions for all machine types and all combinations of parameters investigated is found to be within 2% or 2 mm. The results of the dose comparisons suggest that the generalized eMC is now suitable to calculate dose distributions for Varian, Elekta and Siemens linear accelerators with sufficient accuracy in the range of the investigated combinations of beam energies, applicator sizes and SSDs.
Resumo:
Although the Monte Carlo (MC) method allows accurate dose calculation for proton radiotherapy, its usage is limited due to long computing time. In order to gain efficiency, a new macro MC (MMC) technique for proton dose calculations has been developed. The basic principle of the MMC transport is a local to global MC approach. The local simulations using GEANT4 consist of mono-energetic proton pencil beams impinging perpendicularly on slabs of different thicknesses and different materials (water, air, lung, adipose, muscle, spongiosa, cortical bone). During the local simulation multiple scattering, ionization as well as elastic and inelastic interactions have been taken into account and the physical characteristics such as lateral displacement, direction distributions and energy loss have been scored for primary and secondary particles. The scored data from appropriate slabs is then used for the stepwise transport of the protons in the MMC simulation while calculating the energy loss along the path between entrance and exit position. Additionally, based on local simulations the radiation transport of neutrons and the generated ions are included into the MMC simulations for the dose calculations. In order to validate the MMC transport, calculated dose distributions using the MMC transport and GEANT4 have been compared for different mono-energetic proton pencil beams impinging on different phantoms including homogeneous and inhomogeneous situations as well as on a patient CT scan. The agreement of calculated integral depth dose curves is better than 1% or 1 mm for all pencil beams and phantoms considered. For the dose profiles the agreement is within 1% or 1 mm in all phantoms for all energies and depths. The comparison of the dose distribution calculated using either GEANT4 or MMC in the patient also shows an agreement of within 1% or 1 mm. The efficiency of MMC is up to 200 times higher than for GEANT4. The very good level of agreement in the dose comparisons demonstrate that the newly developed MMC transport results in very accurate and efficient dose calculations for proton beams.
Resumo:
Latent class regression models are useful tools for assessing associations between covariates and latent variables. However, evaluation of key model assumptions cannot be performed using methods from standard regression models due to the unobserved nature of latent outcome variables. This paper presents graphical diagnostic tools to evaluate whether or not latent class regression models adhere to standard assumptions of the model: conditional independence and non-differential measurement. An integral part of these methods is the use of a Markov Chain Monte Carlo estimation procedure. Unlike standard maximum likelihood implementations for latent class regression model estimation, the MCMC approach allows us to calculate posterior distributions and point estimates of any functions of parameters. It is this convenience that allows us to provide the diagnostic methods that we introduce. As a motivating example we present an analysis focusing on the association between depression and socioeconomic status, using data from the Epidemiologic Catchment Area study. We consider a latent class regression analysis investigating the association between depression and socioeconomic status measures, where the latent variable depression is regressed on education and income indicators, in addition to age, gender, and marital status variables. While the fitted latent class regression model yields interesting results, the model parameters are found to be invalid due to the violation of model assumptions. The violation of these assumptions is clearly identified by the presented diagnostic plots. These methods can be applied to standard latent class and latent class regression models, and the general principle can be extended to evaluate model assumptions in other types of models.
Resumo:
Markov chain Monte Carlo is a method of producing a correlated sample in order to estimate features of a complicated target distribution via simple ergodic averages. A fundamental question in MCMC applications is when should the sampling stop? That is, when are the ergodic averages good estimates of the desired quantities? We consider a method that stops the MCMC sampling the first time the width of a confidence interval based on the ergodic averages is less than a user-specified value. Hence calculating Monte Carlo standard errors is a critical step in assessing the output of the simulation. In particular, we consider the regenerative simulation and batch means methods of estimating the variance of the asymptotic normal distribution. We describe sufficient conditions for the strong consistency and asymptotic normality of both methods and investigate their finite sample properties in a variety of examples.
Resumo:
Permutation tests are useful for drawing inferences from imaging data because of their flexibility and ability to capture features of the brain that are difficult to capture parametrically. However, most implementations of permutation tests ignore important confounding covariates. To employ covariate control in a nonparametric setting we have developed a Markov chain Monte Carlo (MCMC) algorithm for conditional permutation testing using propensity scores. We present the first use of this methodology for imaging data. Our MCMC algorithm is an extension of algorithms developed to approximate exact conditional probabilities in contingency tables, logit, and log-linear models. An application of our non-parametric method to remove potential bias due to the observed covariates is presented.
Resumo:
Currently photon Monte Carlo treatment planning (MCTP) for a patient stored in the patient database of a treatment planning system (TPS) can usually only be performed using a cumbersome multi-step procedure where many user interactions are needed. This means automation is needed for usage in clinical routine. In addition, because of the long computing time in MCTP, optimization of the MC calculations is essential. For these purposes a new graphical user interface (GUI)-based photon MC environment has been developed resulting in a very flexible framework. By this means appropriate MC transport methods are assigned to different geometric regions by still benefiting from the features included in the TPS. In order to provide a flexible MC environment, the MC particle transport has been divided into different parts: the source, beam modifiers and the patient. The source part includes the phase-space source, source models and full MC transport through the treatment head. The beam modifier part consists of one module for each beam modifier. To simulate the radiation transport through each individual beam modifier, one out of three full MC transport codes can be selected independently. Additionally, for each beam modifier a simple or an exact geometry can be chosen. Thereby, different complexity levels of radiation transport are applied during the simulation. For the patient dose calculation, two different MC codes are available. A special plug-in in Eclipse providing all necessary information by means of Dicom streams was used to start the developed MC GUI. The implementation of this framework separates the MC transport from the geometry and the modules pass the particles in memory; hence, no files are used as the interface. The implementation is realized for 6 and 15 MV beams of a Varian Clinac 2300 C/D. Several applications demonstrate the usefulness of the framework. Apart from applications dealing with the beam modifiers, two patient cases are shown. Thereby, comparisons are performed between MC calculated dose distributions and those calculated by a pencil beam or the AAA algorithm. Interfacing this flexible and efficient MC environment with Eclipse allows a widespread use for all kinds of investigations from timing and benchmarking studies to clinical patient studies. Additionally, it is possible to add modules keeping the system highly flexible and efficient.
Resumo:
The purpose of this work was to study and quantify the differences in dose distributions computed with some of the newest dose calculation algorithms available in commercial planning systems. The study was done for clinical cases originally calculated with pencil beam convolution (PBC) where large density inhomogeneities were present. Three other dose algorithms were used: a pencil beam like algorithm, the anisotropic analytic algorithm (AAA), a convolution superposition algorithm, collapsed cone convolution (CCC), and a Monte Carlo program, voxel Monte Carlo (VMC++). The dose calculation algorithms were compared under static field irradiations at 6 MV and 15 MV using multileaf collimators and hard wedges where necessary. Five clinical cases were studied: three lung and two breast cases. We found that, in terms of accuracy, the CCC algorithm performed better overall than AAA compared to VMC++, but AAA remains an attractive option for routine use in the clinic due to its short computation times. Dose differences between the different algorithms and VMC++ for the median value of the planning target volume (PTV) were typically 0.4% (range: 0.0 to 1.4%) in the lung and -1.3% (range: -2.1 to -0.6%) in the breast for the few cases we analysed. As expected, PTV coverage and dose homogeneity turned out to be more critical in the lung than in the breast cases with respect to the accuracy of the dose calculation. This was observed in the dose volume histograms obtained from the Monte Carlo simulations.
Resumo:
The conversion of computed tomography (CT) numbers into material composition and mass density data influences the accuracy of patient dose calculations in Monte Carlo treatment planning (MCTP). The aim of our work was to develop a CT conversion scheme by performing a stoichiometric CT calibration. Fourteen dosimetrically equivalent tissue subsets (bins), of which ten bone bins, were created. After validating the proposed CT conversion scheme on phantoms, it was compared to a conventional five bin scheme with only one bone bin. This resulted in dose distributions D(14) and D(5) for nine clinical patient cases in a European multi-centre study. The observed local relative differences in dose to medium were mostly smaller than 5%. The dose-volume histograms of both targets and organs at risk were comparable, although within bony structures D(14) was found to be slightly but systematically higher than D(5). Converting dose to medium to dose to water (D(14) to D(14wat) and D(5) to D(5wat)) resulted in larger local differences as D(5wat) became up to 10% higher than D(14wat). In conclusion, multiple bone bins need to be introduced when Monte Carlo (MC) calculations of patient dose distributions are converted to dose to water.
Resumo:
Different codes are used for Monte Carlo (MC) calculations in radiation therapy. In this research, MCNP4C and GEANT3 codes have been compared in calculations of dosimetric characteristics of Varian Clinac 2300C/D. The parameters of influence in the differences seen in dosimetric features were discussed. This study emphasizes that both MCNP4C and GEANT3 MC can be used in radiation therapy computations and their differences in photon spectra calculations have a negligible effect on percentage depth dose computations in radiation therapy.
Resumo:
A major barrier to widespread clinical implementation of Monte Carlo dose calculation is the difficulty in characterizing the radiation source within a generalized source model. This work aims to develop a generalized three-component source model (target, primary collimator, flattening filter) for 6- and 18-MV photon beams that match full phase-space data (PSD). Subsource by subsource comparison of dose distributions, using either source PSD or the source model as input, allows accurate source characterization and has the potential to ease the commissioning procedure, since it is possible to obtain information about which subsource needs to be tuned. This source model is unique in that, compared to previous source models, it retains additional correlations among PS variables, which improves accuracy at nonstandard source-to-surface distances (SSDs). In our study, three-dimensional (3D) dose calculations were performed for SSDs ranging from 50 to 200 cm and for field sizes from 1 x 1 to 30 x 30 cm2 as well as a 10 x 10 cm2 field 5 cm off axis in each direction. The 3D dose distributions, using either full PSD or the source model as input, were compared in terms of dose-difference and distance-to-agreement. With this model, over 99% of the voxels agreed within +/-1% or 1 mm for the target, within 2% or 2 mm for the primary collimator, and within +/-2.5% or 2 mm for the flattening filter in all cases studied. For the dose distributions, 99% of the dose voxels agreed within 1% or 1 mm when the combined source model-including a charged particle source and the full PSD as input-was used. The accurate and general characterization of each photon source and knowledge of the subsource dose distributions should facilitate source model commissioning procedures by allowing scaling the histogram distributions representing the subsources to be tuned.
Resumo:
Detailed knowledge of the characteristics of the radiation field shaped by a multileaf collimator (MLC) is essential in intensity modulated radiotherapy (IMRT). A previously developed multiple source model (MSM) for a 6 MV beam was extended to a 15 MV beam and supplemented with an accurate model of an 80-leaf dynamic MLC. Using the supplemented MSM and the MC code GEANT, lateral dose distributions were calculated in a water phantom and a portal water phantom. A field which is normally used for the validation of the step and shoot technique and a field from a realistic IMRT treatment plan delivered with dynamic MLC are investigated. To assess possible spectral changes caused by the modulation of beam intensity by an MLC, the energy spectra in five portal planes were calculated for moving slits of different widths. The extension of the MSM to 15 MV was validated by analysing energy fluences, depth doses and dose profiles. In addition, the MC-calculated primary energy spectrum was verified with an energy spectrum which was reconstructed from transmission measurements. MC-calculated dose profiles using the MSM for the step and shoot case and for the dynamic MLC case are in very good agreement with the measured data from film dosimetry. The investigation of a 13 cm wide field shows an increase in mean photon energy of up to 16% for the 0.25 cm slit compared to the open beam for 6 MV and of up to 6% for 15 MV, respectively. In conclusion, the MSM supplemented with the dynamic MLC has proven to be a powerful tool for investigational and benchmarking purposes or even for dose calculations in IMRT.
Resumo:
PURPOSE: Study of behavior and influence of a multileaf collimator (MLC) on dose calculation, verification, and portal energy spectra in the case of intensity-modulated fields obtained with a step-and-shoot or a dynamic technique. METHODS: The 80-leaf MLC for the Varian Clinac 2300 C/D was implemented in a previously developed Monte Carlo (MC) based multiple source model (MSM) for a 6 MV photon beam. Using this model and the MC program GEANT, dose distributions, energy fluence maps and energy spectra at different portal planes were calculated for three different MLC applications. RESULTS: The comparison of MC-calculated dose distributions in the phantom and portal plane, with those measured with films showed an agreement within 3% and 1.5 mm for all cases studied. The deviations mainly occur in the extremes of the intensity modulation. The MC method allows to investigate, among other aspects, dose components, energy fluence maps, tongue-and-groove effects and energy spectra at portal planes. CONCLUSION: The MSM together with the implementation of the MLC is appropriate for a number of investigations in intensity-modulated radiation therapy (IMRT).