969 resultados para Reynolds Average Navier-Stokes (RANS)
Resumo:
本文介绍绕圆柱的二阶Stokes波的简单计算方法,并将它与其他计算结果作比较。结果表明本方法有简单及足够的精度的优点。
Resumo:
本文用W.H.Hui提出的方法,在半物理平面内重新表述了Stokes波的数学模型和边界条件,提出了两种更有效的数值计算方法来获得Stokes波高阶谐波系数,并可递推至无穷。通过小参数转换,重新得到了Cokelet(1977)的波速和半波高的摄动展开式。
Resumo:
<正> Stokes流,或称零雷诺数流,指的是尺寸微小、速度缓慢的流动。它的理论在化工、生物力学、物理化学、环境保护、选矿、地球物理和气象科学等各个领域都有重要的应用。 零雷诺数流可用Stokes方程来描述:式中μ,V和P分别是流体的粘度、速度向量和压力。直到本世纪60年代,只有数目非常有
Resumo:
<正> 流体的湍流运动普遍存在于大气、海洋、飞行器周围、推进装置和流体机械中,探讨湍流形成的条件和过程是流动稳定性理论的研究对象。 早在1843年,Stokes就预见到流体状态转捩的原因是失稳。整整100年前(1883年),Reynolds让液体流入不同口径的圆管,并在对称轴上注入一股纤细的颜色水,以便明显、敏感地观察到湍流的发生。他发现: (1)流速较低时,可以看到层次分明的层流,流速增加到一定程度后,就转变成高度无序的湍流状态;
Resumo:
The experimental investigation of the thermocapillary drop migration in a vertical temperature gradient uns performed on ground. Silicon oil and pure soybean oil were used as experimental medium in drops and as continuous phases, respectively, in the present experiment. The drop migration, under the combined effects of buoyancy: and thermocapillarity, was studied for middle Reynolds numbers in order of magnitude O(10(1)). The drop migration velocities depending on drop diameters were obtained. The present experimental results show relatively small migration velocity in comparison with the one suggested by Young et nl. for linear theory of small Reynolds number. An example of flow patterns inside the drop was observed by PIV method.
Resumo:
The flow structure around an NACA 0012 aerofoil oscillating in pitch around the quarter-chord is numerically investigated by solving the two-dimensional compressible N-S equations using a special matrix-splitting scheme. This scheme is of second-order accuracy in time and space and is computationally more efficient than the conventional flux-splitting scheme. A 'rigid' C-grid with 149 x 51 points is used for the computation of unsteady flow. The freestream Mach number varies from 0.2 to 0.6 and the Reynolds number from 5000 to 20,000. The reduced frequency equals 0.25-0.5. The basic flow structure of dynamic stall is described and the Reynolds number effect on dynamic stall is briefly discussed. The influence of the compressibility on dynamic stall is analysed in detail. Numerical results show that there is a significant influence of the compressibility on the formation and convection of the dynamic stall vortex. There is a certain influence of the Reynolds number on the flow structure. The average convection velocity of the dynamic stall vortex is approximately 0.348 times the freestream velocity.
Resumo:
In this paper, a theory is developed to calculate the average strain field in the materials with randomly distributed inclusions. Many previous researches investigating the average field behaviors were based upon Mori and Tanaka's idea. Since they were restricted to studying those materials with uniform distributions of inclusions they did not need detailed statistical information of random microstructures, and could use the volume average to replace the ensemble average. To study more general materials with randomly distributed inclusions, the number density function is introduced in formulating the average field equation in this research. Both uniform and nonuniform distributions of inclusions are taken into account in detail.