801 resultados para Renewable energy. Offshore wind power. LCOE
Resumo:
"DOE/EIS-0006; UC 11, 13, 60."
Resumo:
"February 1983."
Resumo:
"February 1983."
Resumo:
"UC-13"
Resumo:
Report year ends Sept. 30.
Resumo:
Cover title.
Resumo:
A theoretical model allows for the characterization and optimization of the intra-cavity pulse evolutions in high-power fiber lasers. Multi-parameter analysis of laser performance can be made at a fraction of the computational cost. © 2010 Optical Society of America.
Resumo:
This paper presents an assessment of the technical and economic performance of thermal processes to generate electricity from a wood chip feedstock by combustion, gasification and fast pyrolysis. The scope of the work begins with the delivery of a wood chip feedstock at a conversion plant and ends with the supply of electricity to the grid, incorporating wood chip preparation, thermal conversion, and electricity generation in dual fuel diesel engines. Net generating capacities of 1–20 MWe are evaluated. The techno-economic assessment is achieved through the development of a suite of models that are combined to give cost and performance data for the integrated system. The models include feed pretreatment, combustion, atmospheric and pressure gasification, fast pyrolysis with pyrolysis liquid storage and transport (an optional step in de-coupled systems) and diesel engine or turbine power generation. The models calculate system efficiencies, capital costs and production costs. An identical methodology is applied in the development of all the models so that all of the results are directly comparable. The electricity production costs have been calculated for 10th plant systems, indicating the costs that are achievable in the medium term after the high initial costs associated with novel technologies have reduced. The costs converge at the larger scale with the mean electricity price paid in the EU by a large consumer, and there is therefore potential for fast pyrolysis and diesel engine systems to sell electricity directly to large consumers or for on-site generation. However, competition will be fierce at all capacities since electricity production costs vary only slightly between the four biomass to electricity systems that are evaluated. Systems de-coupling is one way that the fast pyrolysis and diesel engine system can distinguish itself from the other conversion technologies. Evaluations in this work show that situations requiring several remote generators are much better served by a large fast pyrolysis plant that supplies fuel to de-coupled diesel engines than by constructing an entire close-coupled system at each generating site. Another advantage of de-coupling is that the fast pyrolysis conversion step and the diesel engine generation step can operate independently, with intermediate storage of the fast pyrolysis liquid fuel, increasing overall reliability. Peak load or seasonal power requirements would also benefit from de-coupling since a small fast pyrolysis plant could operate continuously to produce fuel that is stored for use in the engine on demand. Current electricity production costs for a fast pyrolysis and diesel engine system are 0.091/kWh at 1 MWe when learning effects are included. These systems are handicapped by the typical characteristics of a novel technology: high capital cost, high labour, and low reliability. As such the more established combustion and steam cycle produces lower cost electricity under current conditions. The fast pyrolysis and diesel engine system is a low capital cost option but it also suffers from relatively low system efficiency particularly at high capacities. This low efficiency is the result of a low conversion efficiency of feed energy into the pyrolysis liquid, because of the energy in the char by-product. A sensitivity analysis has highlighted the high impact on electricity production costs of the fast pyrolysis liquids yield. The liquids yield should be set realistically during design, and it should be maintained in practice by careful attention to plant operation and feed quality. Another problem is the high power consumption during feedstock grinding. Efficiencies may be enhanced in ablative fast pyrolysis which can tolerate a chipped feedstock. This has yet to be demonstrated at commercial scale. In summary, the fast pyrolysis and diesel engine system has great potential to generate electricity at a profit in the long term, and at a lower cost than any other biomass to electricity system at small scale. This future viability can only be achieved through the construction of early plant that could, in the short term, be more expensive than the combustion alternative. Profitability in the short term can best be achieved by exploiting niches in the market place and specific features of fast pyrolysis. These include: •countries or regions with fiscal incentives for renewable energy such as premium electricity prices or capital grants; •locations with high electricity prices so that electricity can be sold direct to large consumers or generated on-site by companies who wish to reduce their consumption from the grid; •waste disposal opportunities where feedstocks can attract a gate fee rather than incur a cost; •the ability to store fast pyrolysis liquids as a buffer against shutdowns or as a fuel for peak-load generating plant; •de-coupling opportunities where a large, single pyrolysis plant supplies fuel to several small and remote generators; •small-scale combined heat and power opportunities; •sales of the excess char, although a market has yet to be established for this by-product; and •potential co-production of speciality chemicals and fuel for power generation in fast pyrolysis systems.
Resumo:
Sustainable development requires combining economic viability with energy and environment conservation and ensuring social benefits. It is conceptualized that for designing a micro industry for sustainable rural industrialization, all these aspects should be integrated right up front. The concept includes; (a) utilization of local produce for value addition in a cluster of villages and enhancing income of the target population; (b) use of renewable energy and total utilization of energy generated by co and trigeneration (combining electric power production with heat utilization for heating and cooling); (c) conservation of water and complete recycling of effluents; (d) total utilization of all wastes for achieving closure towards a zero waste system. Enhanced economic viability and sustainability is achieved by integration of appropriate technologies into the industrial complex. To prove the concept, a model Micro Industrial Complex (MIC) has been set up in a semi arid desert region in Rajasthan, India at village Malunga in Jodhpur district. A biomass powered boiler and steam turbine system is used to generate 100-200 KVA of electric power and high energy steam for heating and cooling processes downstream. The unique feature of the equipment is a 100-150 kW back-pressure steam turbine, utilizing 3-4 tph (tonnes per hour) steam, developed by M/s IB Turbo. The biomass boiler raises steam at about 20 barg 3 tph, which is passed through a turbine to yield about 150 kW of electrical power. The steam let out at a back pressure of 1-3 barg has high exergy and this is passed on as thermal energy (about 2 MW), for use in various applications depending on the local produce and resources. The biomass fuel requirement for the boiler is 0.5-0.75 tph depending on its calorific value. In the current model, the electricity produced is used for running an oil expeller to extract castor oil and the castor cake is used as fuel in the boiler. The steam is used in a Multi Effect Distillation (MED) unit for drinking water production and in a Vapour Absorption Machine (VAM) for cooling, for banana ripening application. Additional steam is available for extraction of herbs such as mint and processing local vegetables. In this paper, we discuss the financial and economic viability of the system and show how the energy, water and materials are completely recycled and how the benefits are directed to the weaker sections of the community.
Resumo:
A megújuló energiatermelés szerepének erősödését figyelhetjük meg az utóbbi években, évtizedekben. A zöldenergiák iránti igényt három fő motivátorcsoporttal lehet indokolni: ellátásbiztonság növelése, környezetvédelem és gazdaságélénkítés. Ezek a szempontok együttesen a fenntartható fejlődést szolgálják, és egyre inkább előtérbe kerülnek mind az EU, mind pedig hazánk szintjén. Magyarország 2010 végén az EU által előírt, 2020-ra elérendő 13%-os megújuló energiaarányt meghaladó, 14,65%-os vállalást tett a Nemzeti Cselekvési Tervben, ezzel is kifejezve elköteleződését a zöldenergiák ösztönzése felé. A jelenlegi kapacitások több mint megkétszerezését igénylő cél a hazai megújuló energiaszektor számára érdemi lehetőségeket jelent, de ezek megvalósításához szükség lenne az ígért új zöldenergia-támogatási rendszer, mielőbbi életbe lépésére. ____ The role of the renewable energy generation is getting even bigger and bigger in the last years, decades. The demand for the green energy has three main motivators: energy security, protecting the environment and fostering innovation. These goals serve the conception of sustainable development, and their function is increasingly highlighted in the EU and in Hungary as well. The EU has prescribed Hungary to reach a 13% share of renewable energy sources in 2020, but in the Hungarian national renewable action plan we have aimed to top the EU request, and to reach a 14,65% in the renewable proportion. This shows that our country is committed to inspire the renewables. In order to reach this goal, Hungary has to more than double its green power plant capacity, which means great possibilities in the sector; but at the same time means challenges as well, because the new renewable promoting system needs to come into force as soon as possible.
Resumo:
Efficient and reliable techniques for power delivery and utilization are needed to account for the increased penetration of renewable energy sources in electric power systems. Such methods are also required for current and future demands of plug-in electric vehicles and high-power electronic loads. Distributed control and optimal power network architectures will lead to viable solutions to the energy management issue with high level of reliability and security. This dissertation is aimed at developing and verifying new techniques for distributed control by deploying DC microgrids, involving distributed renewable generation and energy storage, through the operating AC power system. To achieve the findings of this dissertation, an energy system architecture was developed involving AC and DC networks, both with distributed generations and demands. The various components of the DC microgrid were designed and built including DC-DC converters, voltage source inverters (VSI) and AC-DC rectifiers featuring novel designs developed by the candidate. New control techniques were developed and implemented to maximize the operating range of the power conditioning units used for integrating renewable energy into the DC bus. The control and operation of the DC microgrids in the hybrid AC/DC system involve intelligent energy management. Real-time energy management algorithms were developed and experimentally verified. These algorithms are based on intelligent decision-making elements along with an optimization process. This was aimed at enhancing the overall performance of the power system and mitigating the effect of heavy non-linear loads with variable intensity and duration. The developed algorithms were also used for managing the charging/discharging process of plug-in electric vehicle emulators. The protection of the proposed hybrid AC/DC power system was studied. Fault analysis and protection scheme and coordination, in addition to ideas on how to retrofit currently available protection concepts and devices for AC systems in a DC network, were presented. A study was also conducted on the effect of changing the distribution architecture and distributing the storage assets on the various zones of the network on the system's dynamic security and stability. A practical shipboard power system was studied as an example of a hybrid AC/DC power system involving pulsed loads. Generally, the proposed hybrid AC/DC power system, besides most of the ideas, controls and algorithms presented in this dissertation, were experimentally verified at the Smart Grid Testbed, Energy Systems Research Laboratory. All the developments in this dissertation were experimentally verified at the Smart Grid Testbed.
Resumo:
Two key solutions to reduce the greenhouse gas emissions and increase the overall energy efficiency are to maximize the utilization of renewable energy resources (RERs) to generate energy for load consumption and to shift to low or zero emission plug-in electric vehicles (PEVs) for transportation. The present U.S. aging and overburdened power grid infrastructure is under a tremendous pressure to handle the issues involved in penetration of RERS and PEVs. The future power grid should be designed with for the effective utilization of distributed RERs and distributed generations to intelligently respond to varying customer demand including PEVs with high level of security, stability and reliability. This dissertation develops and verifies such a hybrid AC-DC power system. The system will operate in a distributed manner incorporating multiple components in both AC and DC styles and work in both grid-connected and islanding modes. The verification was performed on a laboratory-based hybrid AC-DC power system testbed as hardware/software platform. In this system, RERs emulators together with their maximum power point tracking technology and power electronics converters were designed to test different energy harvesting algorithms. The Energy storage devices including lithium-ion batteries and ultra-capacitors were used to optimize the performance of the hybrid power system. A lithium-ion battery smart energy management system with thermal and state of charge self-balancing was proposed to protect the energy storage system. A grid connected DC PEVs parking garage emulator, with five lithium-ion batteries was also designed with the smart charging functions that can emulate the future vehicle-to-grid (V2G), vehicle-to-vehicle (V2V) and vehicle-to-house (V2H) services. This includes grid voltage and frequency regulations, spinning reserves, micro grid islanding detection and energy resource support. The results show successful integration of the developed techniques for control and energy management of future hybrid AC-DC power systems with high penetration of RERs and PEVs.
Resumo:
The humanity reached a time of unprecedented technological development. Science has achieved and continues to achieve technologies that allowed increasingly to understand the universe and the laws which govern it, and also try to coexist without destroying the planet we live on. One of the main challenges of the XXI century is to seek and increase new sources of clean energy, renewable and able to sustain our growth and lifestyle. It is the duty of every researcher engage and contribute in this race of energy. In this context, wind power presents itself as one of the great promises for the future of electricity generation . Despite being a bit older than other sources of renewable energy, wind power still presents a wide field for improvement. The development of new techniques for control of the generator along with the development of research laboratories specializing in wind generation are one of the key points to improve the performance, efficiency and reliability of the system. Appropriate control of back-to-back converter scheme allows wind turbines based on the doubly-fed induction generator to operate in the variable-speed mode, whose benefits include maximum power extraction, reactive power injection and mechanical stress reduction. The generator-side converter provides control of active and reactive power injected into the grid, whereas the grid-side converter provides control of the DC link voltage and bi-directional power flow. The conventional control structure uses PI controllers with feed-forward compensation of cross-coupling dq terms. This control technique is sensitive to model uncertainties and the compensation of dynamic dq terms results on a competing control strategy. Therefore, to overcome these problems, it is proposed in this thesis a robust internal model based state-feedback control structure in order to eliminate the cross-coupling terms and thereby improve the generator drive as well as its dynamic behavior during sudden changes in wind speed. It is compared the conventional control approach with the proposed control technique for DFIG wind turbine control under both steady and gust wind conditions. Moreover, it is also proposed in this thesis an wind turbine emulator, which was developed to recreate in laboratory a realistic condition and to submit the generator to several wind speed conditions.
Resumo:
Energy is a vital resource for social and economic development. In the present scenario, the search for alternative energy sources has become fundamental, especially after the oil crises between 1973 and 1979, the Chernobyl nuclear accident in 1986 and the Kyoto Protocol in 1997. The demand for the development of new alternative energy sources aims to complement existing forms allows to meet the demand for energy consumption with greater security. Brazil, with the guideline of not dirtying the energy matrix by the fossil fuels exploitation and the recent energy crisis caused by the lack of rains, directs energy policies for the development of other renewable energy sources, complementing the hydric. This country is one of the countries that stand out for power generation capacity from the winds in several areas, especially Rio Grande do Norte (RN), which is one of the states with highest installed power and great potential to be explored. In this context arises the purpose of this work to identify the incentive to develop policies of wind energy in Rio Grande do Norte. The study was conducted by a qualitative methodology of data analysis called content analysis, oriented for towards message characteristics, its informational value, the words, arguments and ideas expressed in it, constituting a thematic analysis. To collect the data interviews were conducted with managers of major organizations related to wind energy in Brazil and in the state of Rio Grande do Norte. The identification of incentive policies was achieved in three stages: the first seeking incentives policies in national terms, which are applied to all states, the second with the questionnaire application and the third to research and data collection for the development of the installed power of the RN as compared to other states. At the end, the results demonstrated hat in Rio Grande do Norte state there is no incentive policy for the development of wind power set and consolidated, specific actions in order to optimize the bureaucratic issues related to wind farms, especially on environmental issues. The absence of this policy hinders the development of wind energy RN, considering result in reduced competitiveness and performance in recent energy auctions. Among the perceived obstacles include the lack of hand labor sufficient to achieve the reporting and analysis of environmental licenses, the lack of updating the wind Atlas of the state, a shortfall of tax incentives. Added to these difficulties excel barriers in infrastructure and logistics, with the lack of a suitable port for large loads and the need for reform, maintenance and duplication of roads and highways that are still loss-making. It is suggested as future work the relationship of the technology park of energy and the development of wind power in the state, the influence of the technology park to attract businesses and industries in the wind sector to settle in RN and a comparison of incentive policies to development of wind energy in the Brazilian states observing wind development in the same states under study.
Resumo:
The constant necessity for new sources of renewable energy is increasingly promoting the increase of investments in this area. Among other sources, the wind power has been becoming prominent. It is important to promote the search for the improvement of the technologies involved in the topologies of the wind turbines, seeking for alternatives which enhance the gotten performance, despite the irregularity of the wind speed. This study presents a new system for speed control, in this case applied to the wind turbines - the Electromagnetic Frequency Regulator (EFR). One of the most used devices in some topologies is the mechanical gearboxes which, along with a short service life, often represent sources of noise and defects. The EFR does not need these transmission boxes, representing a technological advancement, using for that an adapted induction machine, in which the stator becomes mobile, supportive to the axis of the turbine. In the topology used in this study, the EFR also allows us to leave out the usage of the eletronic converters to establish the coupling between the generator and the electrical grid. It also the reason why it provides the possibility of obtaining the generation in alternating current, with constant voltage and frequency, where there is no electrical grid. Responsable for the mechanical speed control of the generator, the EFR can be useful in other transmission systems in which the mechanical speed control output is the objective. In addition, the EFR operates through the combination of two inputs, a mechanical and other electrical. It multiplies the possibilities of application because it is able to synergistic coupling between different arrays of energy, and, for such reasons, it enables the various sources of energy involved to be uncoupled from the network, being the synchronous generator responsible for the system connection with the electrical grid, simplifying the control strategies on the power injected in it. Experimental and simulation results are presented through this study, about a wind turbine, validating the proposal related to the efficience in the speed control of the system for different wind conditions.