949 resultados para Reduct and Core


Relevância:

40.00% 40.00%

Publicador:

Resumo:

High-resolution measurements of chemical impurities and methane concentrations in Greenland ice core samples from the early glacial period allow the extension of annual-layer counted chronologies and the improvement of gas age-ice age difference (Δage) essential to the synchronization of ice core records. We report high-resolution measurements of a 50 m section of the NorthGRIP ice core and corresponding annual layer thicknesses in order to constrain the duration of the Greenland Stadial 22 (GS-22) between Greenland Interstadials (GIs) 21 and 22, for which inconsistent durations and ages have been reported from Greenland and Antarctic ice core records as well as European speleothems. Depending on the chronology used, GS-22 occurred between approximately 89 (end of GI-22) and 83 kyr b2k (onset of GI-21). From annual layer counting, we find that GS-22 lasted between 2696 and 3092 years and was followed by a GI-21 pre-cursor event lasting between 331 and 369 yr. Our layer-based counting agrees with the duration of stadial 22 as determined from the NALPS speleothem record (3250 ± 526 yr) but not with that of the GICC05modelext chronology (2620 yr) or an alternative chronology based on gas-marker synchronization to EPICA Dronning Maud Land ice core. These results show that GICC05modelext overestimates accumulation and/or underestimates thinning in this early part of the last glacial period. We also revise the possible ranges of NorthGRIP Δdepth (5.49 to 5.85 m) and Δage (498 to 601 yr) at the warming onset of GI-21 as well as the Δage range at the onset of the GI-21 precursor warming (523 to 654 yr), observing that temperature (represented by the δ15N proxy) increases before CH4 concentration by no more than a few decades.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Long-term concentration records of carbonaceous particles (CP) are of increasing interest in climate research due to their not yet completely understood effects on climate. Nevertheless, only poor data on their concentrations and sources before the 20th century are available. We present a first long-term record of organic carbon (OC) and elemental carbon (EC) concentrations – the two main fractions of CP – along with the corresponding fraction of modern carbon (fM) derived from radiocarbon (14C) analysis in ice. This allows a distinction and quantification of natural (biogenic) and anthropogenic (fossil) sources in the past. CP were extracted from an ice archive, with resulting carbon quantities in the microgram range. Analysis of 14C by accelerator mass spectrometry (AMS) was therefore highly demanding. We analysed 33 samples of 0.4 to 1 kg ice from a 150.5 m long ice core retrieved at Fiescherhorn glacier in December 2002 (46°33'3.2" N, 08°04'0.4" E; 3900 m a.s.l.). Samples were taken from bedrock up to the firn/ice transition, covering the time period 1650–1940 and thus the transition from the pre-industrial to the industrial era. Before ~1850, OC was approaching a purely biogenic origin with a mean concentration of 24 μg kg−1 and a standard deviation of 7 μg kg−1. In 1940, OC concentration was about a factor of 3 higher than this biogenic background, almost half of it originating from anthropogenic sources, i.e. from combustion of fossil fuels. The biogenic EC concentration was nearly constant over the examined time period with 6 μg kg−1 and a standard deviation of 1 μg kg−1. In 1940, the additional anthropogenic input of atmospheric EC was about 50 μg kg−1.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The auditory cortex is anatomically segregated into a central core and a peripheral belt region, which exhibit differences in preference to bandpassed noise and in temporal patterns of response to acoustic stimuli. While it has been shown that visual stimuli can modify response magnitude in auditory cortex, little is known about differential patterns of multisensory interactions in core and belt. Here, we used functional magnetic resonance imaging and examined the influence of a short visual stimulus presented prior to acoustic stimulation on the spatial pattern of blood oxygen level-dependent signal response in auditory cortex. Consistent with crossmodal inhibition, the light produced a suppression of signal response in a cortical region corresponding to the core. In the surrounding areas corresponding to the belt regions, however, we found an inverse modulation with an increasing signal in centrifugal direction. Our data suggest that crossmodal effects are differentially modulated according to the hierarchical core-belt organization of auditory cortex.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Nanoparticles are fascinating where physical and optical properties are related to size. Highly controllable synthesis methods and nanoparticle assembly are essential [6] for highly innovative technological applications. Among nanoparticles, nonhomogeneous core-shell nanoparticles (CSnp) have new properties that arise when varying the relative dimensions of the core and the shell. This CSnp structure enables various optical resonances, and engineered energy barriers, in addition to the high charge to surface ratio. Assembly of homogeneous nanoparticles into functional structures has become ubiquitous in biosensors (i.e. optical labeling) [7, 8], nanocoatings [9-13], and electrical circuits [14, 15]. Limited nonhomogenous nanoparticle assembly has only been explored. Many conventional nanoparticle assembly methods exist, but this work explores dielectrophoresis (DEP) as a new method. DEP is particle polarization via non-uniform electric fields while suspended in conductive fluids. Most prior DEP efforts involve microscale particles. Prior work on core-shell nanoparticle assemblies and separately, nanoparticle characterizations with dielectrophoresis and electrorotation [2-5], did not systematically explore particle size, dielectric properties (permittivity and electrical conductivity), shell thickness, particle concentration, medium conductivity, and frequency. This work is the first, to the best of our knowledge, to systematically examine these dielectrophoretic properties for core-shell nanoparticles. Further, we conduct a parametric fitting to traditional core-shell models. These biocompatible core-shell nanoparticles were studied to fill a knowledge gap in the DEP field. Experimental results (chapter 5) first examine medium conductivity, size and shell material dependencies of dielectrophoretic behaviors of spherical CSnp into 2D and 3D particle-assemblies. Chitosan (amino sugar) and poly-L-lysine (amino acid, PLL) CSnp shell materials were custom synthesized around a hollow (gas) core by utilizing a phospholipid micelle around a volatile fluid templating for the shell material; this approach proves to be novel and distinct from conventional core-shell models wherein a conductive core is coated with an insulative shell. Experiments were conducted within a 100 nl chamber housing 100 um wide Ti/Au quadrapole electrodes spaced 25 um apart. Frequencies from 100kHz to 80MHz at fixed local field of 5Vpp were tested with 10-5 and 10-3 S/m medium conductivities for 25 seconds. Dielectrophoretic responses of ~220 and 340(or ~400) nm chitosan or PLL CSnp were compiled as a function of medium conductivity, size and shell material.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND: With the International Classification of Functioning, Disability and Health (ICF), we can now rely on a globally agreed-upon framework and system for classifying the typical spectrum of problems in the functioning of persons given the environmental context in which they live. ICF Core Sets are subgroups of ICF items selected to capture those aspects of functioning that are most likely to be affected by sleep disorders. OBJECTIVE: The objective of this paper is to outline the developmental process for the ICF Core Sets for Sleep. METHODS: The ICF Core Sets for Sleep will be defined at an ICF Core Sets Consensus Conference, which will integrate evidence from preliminary studies, namely (a) a systematic literature review regarding the outcomes used in clinical trials and observational studies, (b) focus groups with people in different regions of the world who have sleep disorders, (c) an expert survey with the involvement of international clinical experts, and (d) a cross-sectional study of people with sleep disorders in different regions of the world. CONCLUSION: The ICF Core Sets for Sleep are being designed with the goal of providing useful standards for research, clinical practice and teaching. It is hypothesized that the ICF Core Sets for Sleep will stimulate research that leads to an improved understanding of functioning, disability, and health in sleep medicine. It is of further hope that such research will lead to interventions and accommodations that improve the restoration and maintenance of functioning and minimize disability among people with sleep disorders throughout the world.