954 resultados para Redox remodelling
Resumo:
ABSTRACT : During my SNSF-funded Ph.D. thesis project, I studied the evolution of redox conditions and organic-carbon preservation in the western Tethyan realm during three major positive excursions in the Cretaceous δ13C record, corresponding to the Valanginian, Early Aptian and Late Cenomanian. These periods were characterized by important global environmental and climate change, which was associated with perturbations in the carbon cycle. For the period of the Valanginian δ13C excursion, total organic carbon (TOC) contents and the quality of preserved organic matter are typical of oxic pelagic settings in the western Tethys. This is confirmed by the absence of major excursions in the stratigraphic distribution of RSTE during the δ13C shift. Published TOC data from other parts of the Valanginian oceans indicate that dys- to anaerobic zones were restricted to marginal seas within the Atlantic and Southern Ocean, and to the Pacific. Phosphorus (P) and mineralogical contents suggest a stepwise climatic evolution during the Valanginian, with a humid and warm climate prior to the δ13C shift leading to an increase in continental runoff. During the δ13C shift, a decrease in detrital input and P contents suggests a change in the climate towards more and conditions. During the early Aptian oceanic anoxic event (OAE 1a), a general increase followed by a rapid decrease in P contents suggests enhanced nutrient input at the beginning of OAE 1a. The return to lower values during OAE 1 a, associated with an increase in RSTE contents, may have been related to the weakened capacity to retain P in the sedimentary reservoir due to bottom-water oxygen depletion. In basinal settings, the RSTE distribution indicates well-developed anoxic conditions during OAE la, whereas in the shallower-water environments, conditions were oxic to suboxic, rather than anoxic. Furthermore, in the deeper part of the Tethys, two distinct enrichments have been observed, indicating fluctuations in the intensity of water column anoxia during the δ73C excursion. We also studied the effect of the end-Cenomanian oceanic anoxic event (OAE 2) on an expanded section in the Chrummflueschlucht (E of Euthal, Ct Switzerland). The goal here was to identify paleoceanographic and paleoenvironmental conditions during OAE 2 in this part of the northern Tethyan margin. The results show that this section is one of the most complete sections for the Cenomanian-Turonian boundary interval known from the Helvetic realm, despite a small hiatus between sediments corresponding to peaks 1 and 2 in the δ13C record. The evolution of P contents points to an increase in the input of this nutrient at the onset of OAE 2. The trends in RSTE contents show, however, that this part of the Helvetic realm was not affected by a strong depletion in oxygen conditions during OAE 2, despite its hemipelagic position. A further goal of this project was to submit the samples to a total extraction method (a combined HF/HNO3/HCI acid digestion) and compare the results obtained by the partial HNO3 acid extraction in order to standardize the analytical prócedures in the extraction of RSTE. The obtained results for samples of OAE 1 a suggest that RSTE trends using the partial HNO3 digestion are very comparable to those obtained by the total digestion method and subsequently normalized with regards to AI contents. RÉSUMÉ : Durant ce projet de thèse, financé par le Swiss National Science Funding (SNSF), j'ai étudié l'évolution des conditions redox et de la préservation de carbone organique dans le domnaine ouesttéthysien pendant trois excursions majeures du δ13C au Crétacé correspondant au Valanginien, à l'Aptien inférieur et à la limite Cénomanien-Turonien. Ces périodes sont caractérisées par des changements climatiques et environnementaux globaux associés à des perturbations dans le cylce du carbone. Pour L'excursion positive en δ13C du Valanginien, les analyses du carbone organique total (COT) et les observations palynologiques du domaine téthysien ont présenté des indications d'environnement pélagique relativementbienoxygéné. L'absence d'enrichissements en éléments traces sensibles aux conditions redox (TE) pendant l'excursion positive en δ13C confirme ces interprétations. Les données publiées de COT dans d'autres partie du globe indiquent cependant l'existence de conditions dys- à anaérobiques dans certains bassins restreints de l'Atlantique, l'Océan Austral et du Pacifique. L'évolution du phosphore (P) et la composition minéralogique des sédiments semblent indiquer un climat relativement chaud et humide avant l'excursion en δ13C entraînant une augmentation de l'altération continentale. Pendant le shift isotopique, une diminution des apports détritiques et du P suggèrent une transition vers des conditions plus arides. À l'Aptien Inférieur, le début de l'événement anoxique (OAE 1a) est marqué par une augmentation générale du P dans les sédiments indiquant une augmentation du niveau trophique à la base de l'excursion isotopique. Durant l'événement anoxique, les sédiments sont relativement appauvris en P. Cette diminution rapide associée à des enrichissements en TE est probablement liée à une remobilisation plus importante du P lors de la mise en place de conditions anoxiques dans les eaux de fond. Dans les environnements de bassin, le comportement des TE (enrichissements bien marqués) attestent de conditions réductrices bien marquées alors que dans les environnements moins profonds, les conditions semblent plutôt oxiques à dysoxiques. De plus, deux niveaux d'enrichissement en TE ont été observés dans la partie plus profonde de la Téthys, indiquant des fluctuations assez rapides dans l'intensité de l'anoxie de la colonne d'eau. Nous avons ensuite étudié les effets de l'événement anoxique de la fin du Cenomanien (OAE 2) dans un basin marginal de la marge nord de la Téthys avec la coupe de Chrummflueschlucht (à l'est de Euthal, Ct Schwyz). Les résultats ont montré que cette coupe présente un des enregistrements sédimentaires des plus complets de l'OAE 2 dans le domaine helvétique malgré un hiatus entre le pic 1 et 2 de l'excursion en δ13C. L'évolution du P montre une augmentation au début de l'OAE 2. Cependant, la distribution des TE indique que cette région n'a pas été affectée par des conditions réductrices trop importantes. Un second aspect de ce travail a été l'étude des différentes méthodes sur l'analyse de la distribution des TE. Des échantillons de l'OAE 1a ont été soumis à deux types d'extractions, l'une dite «totale » (attaque combinée d'acides HF/HNO3/HCI) et l'autre dite partielle » (HNO3). Les résultats obtenus suggèrent que les courbes de tendances des TE acquises par extraction partielle sont semblables à celle obtenues par extraction totale et normalisées par l'AI.
Resumo:
OBJECTIVES: Residual mitral regurgitation after valve repair worsens patients' clinical outcome. Postimplant adjustable mitral rings potentially address this issue, allowing the reshaping of the annulus on the beating heart under echocardiography control. We developed an original mitral ring allowing valve geometry remodelling after the implantation and designed an animal study to assess device effectiveness in correcting residual mitral regurgitation. METHODS: The device consists of two concentric rings: one internal and flexible, sutured to the mitral annulus and a second external and rigid. A third conic element slides between the two rings, modifying the shape of the flexible ring. This sliding element is remotely activated with a rotating tool. Animal model: in adult swine, under cardio pulmonary bypass and cardiac arrest, we shortened the primary chordae of P2 segment to reproduce Type III regurgitation and implanted the active ring. We used intracardiac ultrasound to assess mitral regurgitation and the efficacy of the active ring to correct it. RESULTS: Severe mitral regurgitation (3+ and 4+) was induced in eight animals, 54 ± 6 kg in weight. Vena contracta width decreased from 0.8 ± 0.2 to 0.1 cm; proximal isovelocity surface area radius decreased from 0.8 ± 0.2 to 0.1 cm and effective regurgitant orifice area decreased from 0.50 ± 0.1 to 0.1 ± 0.1 cm(2). Six animals had a reversal of systolic pulmonary flow that normalized following the activation of the device. All corrections were reversible. CONCLUSIONS: Postimplant adjustable mitral ring corrects severe mitral regurgitation through the reversible modification of the annulus geometry on the beating heart. It addresses the frequent and morbid issue of recurrent mitral valve regurgitation.
Resumo:
The Mississippi Valley-type zinc and lead deposits at Topla (250,150 metric tons (t) of ore grading 1.0 wt % Zn and 3.3 wt % Pb) and Mezica (19 million metric tons (Mt) of ore grading 5.3 wt % Pb and 2.7 wt % Zn) occur within the Middle to Upper Triassic platform carbonate rocks of the northern Karavanke/Drau Range geotectonic units of the Eastern Alps, Slovenia. The ore and host rocks of these deposits have been investigated by a combination of inorganic and organic geochemical methods to determine major, trace, and rare earth element (REE) concentrations, hydrocarbon distribution, and stable isotope ratios of carbonates, kerogen, extractable organic matter, and individual hydrocarbons. These data combined with sedimentological evidence provide insight into the paleoenvironmental conditions at the site of ore formation. The carbonate isotope composition, the REE patterns, and the distribution of hydrocarbon biomarkers (normal alkanes and steranes) suggest a marine depositional environment. At Topla, a relatively high concentration of redox sensitive trace elements (V, Mo, U) in the host dolostones and REE patterns parallel to that of the North American shale composite suggest that sediments were deposited in a reducing environment. Anoxic conditions enhanced the preservation of organic matter and resulted in relatively higher total organic carbon contents (up to 0.4 wt %). The isotopic composition of the kerogen (delta C-13(kerogon) = -29.4 to -25.0 parts per thousand, delta N-15(kerogen) = -.13.6 to 6.8 parts per thousand) suggests that marine algae and/or bacteria were the main source of organic carbon with a very minor contribution from detrital continental plants and a varying degree of alteration. Extractable organic matter from Topla ore is generally depleted in C-13 compared to the associated kerogen, which is consistent with an indigenous source of the bitumens. The mineralization correlates with delta N-15(kerogen) values around 0 per mil, C-13 depleted kerogen, C-13 enriched n-heptadecane, and relatively high concentrations of bacteria] hydrocarbon biomarkers, indicating a high cyanobacterial biomass at the site of ore formation. Abundant dissimilatory sulfate-reducing bacteria, feeding on the cyanobacterial remains, led to accumulation of biogenic H2S in the pore water of the sediments. This biogenic H2S was mainly incorporated into sedimentary organic matter and diagenetic pyrite. Higher bacterial activity at the ore site also is indicated by specific concentration ratios of hydrocarbons, which are roughly correlated with total Pb plus Zn contents. This correlation is consistent with mixing of hydrothermal metal-rich, fluids and local bacteriogenic sulfide sulfur. The new geochemical data provide supporting evidence that Topla is a low-temperature Mississippi Valley-type deposit formed in an anoxic supratidal saline to hypersaline environment. A laminated cyanobacterial mat, with abundant sulfate-reducing bacteria was the main site of sulfate reduction.
Resumo:
PURPOSE OF REVIEW: The mechanisms involved in the formation of red blood cell (RBC) microparticles in vivo as well as during erythrocyte storage are reviewed, and the potential role of microparticles in transfusion medicine is described. RECENT FINDINGS: Microparticles release is an integral part of the erythrocyte ageing process, preventing early removal of RBCs. Proteomics analyses have outlined the key role of band 3-ankyrin anchoring complex and the occurrence of selective RBC membrane remodelling mechanisms in microparticles formation. The presence of several RBC antigens, expressed on microparticles, has been demonstrated. The potential deleterious effects of RBC microparticles in transfused recipients, including hypercoagulability, microcirculation impairment and immunosuppression, are discussed. SUMMARY: Formation and role of RBC microparticles are far from being completely understood. Combining various approaches to elucidate these mechanisms could improve blood product quality and transfusion safety. Implementation of RBC microparticles as biomarkers in the laboratory routine needs to overcome technical barriers involved in their analysis.
Resumo:
Using high performance liquid chromatography (HPLC) analysis it was possible to determine simultaneously the concentration of organic acids (pyruvate, lactate, succinate, fumarate, malate, acetate, propionate, acetoacetate, and ß-hydroxybutyrate) in the digestive gland and the extracellular concentration of these same acids in the hemolymph of estivating Biomphalaria glabrata, the intermediate host of Schistosoma mansoni. After a 7 day period of estivation, there was a significant increase in the tissue levels of lactate, succinate, malate and acetate compared to non-estivating snails. After 14 days of estivation, the levels of lactate and acetate were also significantly elevated. The hemolymph concentrations of pyruvate and acetate increased significantly after 7 days and acetate concentrations continued to be significantly increased up to 14 days of estivation. The other organic acids studied, such as ketone body acetoacetate and ß-hydroxybutyrate or the volatile acid propionate, did not accumulate. Their tissue concentrations, however, increased on the 7th day of estivation and reached normal levels within two weeks of estivation for some of them. One should take into consideration how the reduction in metabolism can be handled under aerobic conditions, and what role anaerobic pathways may play in both energy formation and redox balance processes.
Resumo:
Projecte de recerca elaborat a partir d’una estada a l’Institut National de la Recherche Agronomique, França, entre 2007 i 2009. Saccharomyces cerevisiae ha estat el llevat utilitzat durant mil.lenis en l'elaboració de vins. Tot i així, es té poc coneixement sobre les pressions de selecció que han actuat en la modelització del genoma dels llevats vínics. S’ha seqüenciat el genoma d'una soca vínica comercial, EC1118, obtenint 31 supercontigs que cobreixen el 97% del genoma de la soca de referència, S288c. S’ha trobat que el genoma de la soca vínica es diferencia bàsicament en la possessió de 3 regions úniques que contenen 34 gens implicats en funcions claus per al procés fermentatiu. A banda, s’han dut a terme estudis de filogènia i synteny (ordre dels gens) que mostren que una d'aquestes tres regions és pròxima a una espècie relacionada amb el gènere Saccharomyces, mentre que les altres dos regions tenen un origen no-Saccharomyces. S’ha identificat mitjançant PCR i seqüenciació a Zygosaccharomyces bailii, una espècie contaminant de les fermentacions víniques, com a espècie donadora d'una de les dues regions. Les hibridacions naturals entre soques de diferents espècies dins del grup Saccharomyces sensu stricto ja han estat descrites. El treball és el primer que presenta hibridacions entre espècies Saccharomyces i no-Saccharomyces (Z. bailii, en aquest cas). També s’assenyala que les noves regions es troben freqüent i diferencialment presents entre els clades de S. cerevisiae, trobant-se de manera gairebé exclusiva en el grup de les soques víniques, suggerint que es tracta d'una adquisició recent de transferència gènica. En general, les dades demostren que el genoma de les soques víniques pateix una constant remodelació mitjançant l'adquisició de gens exògens. Els resultats suggereixen que aquests processos estan afavorits per la proximitat ecològica i estan implicats en l'adaptació molecular de les soques víniques a les condicions d'elevada concentració en sucres, poc nitrogen i elevades concentracions en etanol.
Resumo:
α-glycerophosphate dehydrogenase (α-GPDH-EC.1.1.1.8) has been considered absent in Trypanosoma cruzi in contradiction with all other studied trypanosomatids. After observing that the sole malate dehydrogenase can not maintain the intraglycosomal redox balance, GPDH activity was looked for and found, although in very variable levels, in epimastigotes extracts. GPDH was shown to be exclusively located in the glycosome of T. cruzi by digitonin treatment and isopycnic centrifugation. Antibody against T. brucei GPDH showed that this enzyme seemed to be present in an essentially inactive form at the beginning of the epimastigotes growth. GPDH is apparently linked to a salicylhydroxmic-sensitive glycerophosphate reoxidizing system and plays an essential role in the glycosome redox balance.
Resumo:
The Urn Sohryngkew section of Meghalaya, NE India, located 800-1000 km from the Deccan volcanic province, is one of the most complete Cretaceous-Tertiary boundary (KTB) transitions worldwide with all defining and supporting criteria present: mass extinction of planktic foraminifera, first appearance of Danian species, delta(13)C shift, Ir anomaly (12 ppb) and KTB red layer. The geochemical signature of the KTB layer indicates not only an extraterrestrial signal (Ni and all Platinum Group Elements (PGEs)) of a second impact that postdates Chicxulub, but also a significant component resulting from condensed sedimentation (P), redox fluctuations (As, Co, Fe, Pb, Zn, and to a lesser extent Ni and Cu) and volcanism. From the late Maastrichtian C29r into the early Danian, a humid climate prevailed (kaolinite: 40-60%, detrital minerals: 50-80%). During the latest Maastrichtian, periodic acid rains (carbonate dissolution; CIA index: 70-80) associated with pulsed Deccan eruptions and strong continental weathering resulted in mesotrophic waters. The resulting super-stressed environmental conditions led to the demise of nearly all planktic foraminiferal species and blooms (>95%) of the disaster opportunist Guembelitria cretacea. These data reveal that detrimental marine conditions prevailed surrounding the Deccan volcanic province during the main phase of eruptions in C29r below the KTB. Ultimately these environmental conditions led to regionally early extinctions followed by global extinctions at the KTB. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Two regulons, soxRS and marRAB, are associated with resistance to quinolones or multiple antibiotic in Salmonella enterica serovar Typhimurium. These regulons are activated by nitric oxide and redox-cycling drugs, such as paraquat and cause on activation of the acrAB-encoded efflux pump. In this study, we investigated the effect of nitric oxide (NO) alone and in combination with ofloxacin, ciprofloxacin, and pefloxacin against S. typhimurium clinical isolates and mutant strains in vitro. We did not observe synergistic effect against clinical isolates and SH5014 (parent strain of acr mutant), while we found synergistic effect against PP120 (soxRS mutant) and SH7616 (an acr mutant) S. typhimurium for all quinolones. Our results suggest that the efficiencies of some antibiotics, including ofloxacin, ciprofloxacin, and pefloxacin are decreased via activation of soxRS and marRAB regulons by NO in S. enterica serovar Typhimurium. Further studies are warranted to establish the interaction of NO with the genes of Salmonella and, with multiple antibiotic resistance.
Resumo:
Phosphodiesterases (PDEs) are responsible for the breakdown of intracellular cyclic nucleotides, from which PDE4 are the major cyclic AMP metabolizing isoenzymes found in inflammatory and immune cells. This generated greatest interest on PDE4 as a potential target to treat lung inflammatory diseases. For example, cigarette smoke-induced neutrophilia in BAL was dose and time dependently reduced by cilomilast. Beside the undesired side effects associated with the first generation of PDE4 inhibitors, the second generation of selective inhibitors such as cilomilast and roflumilast showed clinical efficacy in asthma and chronic obstrutive pulmonary diseases trials, thus re-enhancing the interest on these classes of compounds. However, the ability of PDE4 inhibitors to prevent or modulate the airway remodelling remains relatively unexplored. We demonstrated that selective PDE4 inhibitor RP 73-401 reduced matrix metalloproteinase (MMP)-9 activity and TGF-beta1 release during LPS-induced lung injury in mice and that CI-1044 inhibited the production of MMP-1 and MMP-2 from human lung fibroblasts stimulated by pro-inflammatory cytokines. Since inflammatory diseases of the bronchial airways are associated with destruction of normal tissue structure, our data suggest a therapeutic benefit for PDE4 inhibitors in tissue remodelling associated with chronic lung diseases.
Resumo:
Allergic diseases result in a considerable socioeconomic burden. The incidence of allergic diseases, notably allergic asthma, has risen to high levels for reasons that are not entirely understood. With an increasing knowledge of underlying mechanisms, there is now more potential to target the inflammatory process rather than the overt symptoms. This focuses attention on the role of leukocytes especially Th2 lymphocytes that regulate allergic inflammation and effector cells where eosinophils have received much attention. Eosinophils are thought to be important based on the high numbers that are recruited to sites of allergic inflammation and the potential of these cells to effect both tissue injury and remodelling. It is hoped that future therapy will be directed towards specific leukocyte types, without overtly compromising essential host defence responses. One obvious target is leukocyte recruitment. This necessitates a detailed understanding of underlying mechanisms, particularly those involving soluble che-moattractants signals and cell-cell adhesion molecules.
Resumo:
Healing of cutaneous wounds, which is crucial for survival after an injury, proceeds via a well-tuned pattern of events including inflammation, re-epithelialisation, and matrix and tissue remodelling. These events are regulated spatio-temporally by a variety of growth factors and cytokines. The inflammation that immediately follows injury increases the expression of peroxisome proliferator-activated receptor (PPAR)-beta in the wound edge keratinocytes and triggers the production of endogenous PPARbeta ligands that activate the newly produced receptor. This elevated PPARbeta activity results in increased resistance of the keratinocytes to the apoptotic signals released during wounding, allowing faster re-epithelialisation. The authors speculate that, in parallel, ligand activation of PPARbeta in infiltrated macrophages attenuates the inflammatory response, which also promotes repair. Thus, current understanding of the roles of PPARbeta in different cell types implicated in tissue repair has revealed an intriguing intercellular cross-talk that coordinates, spatially and temporally, inflammation, keratinocyte survival, proliferation and migration, which are all essential for efficient wound repair. These novel insights into the orchestrating roles of PPARbeta during wound healing may be helpful in the development of drugs for acute and chronic wound disorders.
Resumo:
Thioredoxins comprise a conserved family of redox regulators involved in many biological processes, including stress resistance and aging. We report that the C. elegans thioredoxin TRX-1 acts in ASJ head sensory neurons as a novel modulator of the insulin-like neuropeptide DAF-28 during dauer formation. We show that increased formation of stress-resistant, long-lived dauer larvae in mutants for the gene encoding the insulin-like neuropeptide DAF-28 requires TRX-1 acting in ASJ neurons, upstream of the insulin-like receptor DAF-2. Genetic rescue experiments demonstrate that redox-independent functions of TRX-1 specifically in ASJ neurons are needed for the dauer formation constitutive (Daf-c) phenotype of daf-28 mutants. GFP reporters of trx-1 and daf-28 show opposing expression patterns in dauers (i.e. trx-1 is up-regulated and daf-28 is down-regulated), an effect that is not observed in growing L2/L3 larvae. In addition, functional TRX-1 is required for the down-regulation of a GFP reporter of daf-28 during dauer formation, a process that is likely subject to DAF-28-mediated feedback regulation. Our findings demonstrate that TRX-1 modulates DAF-28 signaling by contributing to the down-regulation of daf-28 expression during dauer formation. We propose that TRX-1 acts as a fluctuating neuronal signaling modulator within ASJ neurons to monitor the adjustment of neuropeptide expression, including insulin-like proteins, during dauer formation in response to adverse environmental conditions.
Resumo:
Introduction. Fibromyalgia is a chronic pain syndrome with unknown etiology. Recent studies have shown some evidence demonstrating that oxidative stress may have a role in the pathophysiology of fibromyalgia. However, it is still not clear whether oxidative stress is the cause or the effect of the abnormalities documented in fibromyalgia. Furthermore, the role of mitochondria in the redox imbalance reported in fibromyalgia also is controversial. We undertook this study to investigate the role of mitochondrial dysfunction, oxidative stress, and mitophagy in fibromyalgia. Methods. We studied 20 patients (2 male, 18 female patients) from the database of the Sevillian Fibromyalgia Association and 10 healthy controls. We evaluated mitochondrial function in blood mononuclear cells from fibromyalgia patients measuring, coenzyme Q10 levels with high-performance liquid chromatography (HPLC), and mitochondrial membrane potential with flow cytometry. Oxidative stress was determined by measuring mitochondrial superoxide production with MitoSOX™ and lipid peroxidation in blood mononuclear cells and plasma from fibromyalgia patients. Autophagy activation was evaluated by quantifying the fluorescence intensity of LysoTracker™ Red staining of blood mononuclear cells. Mitophagy was confirmed by measuring citrate synthase activity and electron microscopy examination of blood mononuclear cells. Results. We found reduced levels of coenzyme Q10, decreased mitochondrial membrane potential, increased levels of mitochondrial superoxide in blood mononuclear cells, and increased levels of lipid peroxidation in both blood mononuclear cells and plasma from fibromyalgia patients. Mitochondrial dysfunction was also associated with increased expression of autophagic genes and the elimination of dysfunctional mitochondria with mitophagy. Conclusions. These findings may support the role of oxidative stress and mitophagy in the pathophysiology of fibromyalgia.
Resumo:
Introduction. Critically ill patients suffer from oxidative stress caused by reactive oxygen species (ROS) and reactive nitrogen species (RNS). Although ROS/RNS are constantly produced under normal circumstances, critical illness can drastically increase their production. These patients have reduced plasma and intracellular levels of antioxidants and free electron scavengers or cofactors, and decreased activity of the enzymatic system involved in ROS detoxification. The pro-oxidant/antioxidant balance is of functional relevance during critical illness because it is involved in the pathogenesis of multiple organ failure. In this study the objective was to evaluate the relation between oxidative stress in critically ill patients and antioxidant vitamin intake and severity of illness. Methods. Spectrophotometry was used to measure in plasma the total antioxidant capacity and levels of lipid peroxide, carbonyl group, total protein, bilirubin and uric acid at two time points: at intensive care unit (ICU) admission and on day seven. Daily diet records were kept and compliance with recommended dietary allowance (RDA) of antioxidant vitamins (A, C and E) was assessed. Results. Between admission and day seven in the ICU, significant increases in lipid peroxide and carbonyl group were associated with decreased antioxidant capacity and greater deterioration in Sequential Organ Failure Assessment score. There was significantly greater worsening in oxidative stress parameters in patients who received antioxidant vitamins at below 66% of RDA than in those who received antioxidant vitamins at above 66% of RDA. An antioxidant vitamin intake from 66% to 100% of RDA reduced the risk for worsening oxidative stress by 94% (ods ratio 0.06, 95% confidence interval 0.010 to 0.39), regardless of change in severity of illness (Sequential Organ Failure Assessment score). Conclusion. The critical condition of patients admitted to the ICU is associated with worsening oxidative stress. Intake of antioxidant vitamins below 66% of RDA and alteration in endogenous levels of substances with antioxidant capacity are related to redox imbalance in critical ill patients. Therefore, intake of antioxidant vitamins should be carefully monitored so that it is as close as possible to RDA.